Spelling suggestions: "subject:"brain mechanisms"" "subject:"grain mechanisms""
1 |
Functional modelling of the human timing mechanismMadison, Guy January 2001 (has links)
<p>Behaviour occurs in time, and precise timing in the range of seconds and fractions of seconds is for most living organisms necessary for successful interaction with the environment. Our ability to time discrete actions and to predict events on the basis of prior events indicates the existence of an internal timing mechanism. The nature of this mechanism provides essential constraints on models of the functional organisation of the brain. </p><p>The present work indicates that there are discontinuities in the function of time close to 1 s and 1.4 s, both in the amount of drift in a series of produced intervals (Study I) and in the detectability of drift in a series of sounds (Study II). The similarities across different tasks further suggest that action and perceptual judgements are governed by the same (kind of) mechanism. Study III showed that series of produced intervals could be characterised by different amounts of positive fractal dependency related to the aforementioned discontinuities. </p><p>In conjunction with other findings in the literature, these results suggest that timing of intervals up to a few seconds is strongly dependent on previous intervals and on the duration to be timed. This argues against a clock-counter mechanism, as proposed by scalar timing theory, according to which successive intervals are random and the size of the timing error conforms to Weber's law. </p><p>A functional model is proposed, expressed in an autoregressive framework, which consists of a single-interval timer with error corrective feedback. The duration-specificity of the proposed model is derived from the order of error correction, as determined by a semi-flexible temporal integration span. </p>
|
2 |
Functional modelling of the human timing mechanismMadison, Guy January 2001 (has links)
Behaviour occurs in time, and precise timing in the range of seconds and fractions of seconds is for most living organisms necessary for successful interaction with the environment. Our ability to time discrete actions and to predict events on the basis of prior events indicates the existence of an internal timing mechanism. The nature of this mechanism provides essential constraints on models of the functional organisation of the brain. The present work indicates that there are discontinuities in the function of time close to 1 s and 1.4 s, both in the amount of drift in a series of produced intervals (Study I) and in the detectability of drift in a series of sounds (Study II). The similarities across different tasks further suggest that action and perceptual judgements are governed by the same (kind of) mechanism. Study III showed that series of produced intervals could be characterised by different amounts of positive fractal dependency related to the aforementioned discontinuities. In conjunction with other findings in the literature, these results suggest that timing of intervals up to a few seconds is strongly dependent on previous intervals and on the duration to be timed. This argues against a clock-counter mechanism, as proposed by scalar timing theory, according to which successive intervals are random and the size of the timing error conforms to Weber's law. A functional model is proposed, expressed in an autoregressive framework, which consists of a single-interval timer with error corrective feedback. The duration-specificity of the proposed model is derived from the order of error correction, as determined by a semi-flexible temporal integration span.
|
3 |
Brain Mechanisms for the Perception of Visual and Auditory Communication Signals – Insights from Autism Spectrum DisorderBorowiak, Kamila 17 August 2020 (has links)
Kommunikation ist allgegenwärtig in unserem Alltag. Personen mit einer Autismus-Spektrum-Störung (ASS) zeigen soziale Schwierigkeiten und beim Erkennen von Kommunikationssignalen von Gesicht und Stimme. Da derartige Schwierigkeiten die Lebensqualität beeinträchtigen können, ist ein tiefgreifendes Verständnis der zugrundeliegenden Mechanismen von großer Bedeutung. In der vorliegenden Dissertation befasste ich mich mit sensorischen Gehirnmechanismen, die der Verarbeitung von Kommunikationssignalen zugrunde liegen und, die in der Forschung zu ASS bisher wenig Beachtung fanden. Erstens untersuchte ich, ob eine intranasale Gabe von Oxytocin die Erkennung der Stimmenidentität beeinflussen, und ihre Auffälligkeiten bei Personen mit ASS mildern kann. Zweitens erforschte ich, welche neuronalen Prozesse den Schwierigkeiten in der Wahrnehmung visueller Sprache in ASS zugrunde liegen, da bisherige Evidenz nur auf Verhaltensdaten basierte. Diese Fragestellungen beantwortete ich mit Hilfe von funktioneller Magnetresonanztomographie, Eyetracking und Verhaltenstestungen. Die Ergebnisse der Dissertation liefern neuartige Erkenntnisse, die für Personen mit ASS und typisch entwickelte Personen von hoher Relevanz sind. Erstens bestätigen sie die Annahmen, dass atypische sensorische Mechanismen für unser Verständnis der sozialen Schwierigkeiten in ASS grundlegend sind. Sie zeigen, dass atypische Funktionen sensorischer Gehirnregionen den Kommunikationseinschränkungen in ASS zugrunde liegen und die Effektivität von Interventionen beeinflussen, die jene Schwierigkeiten vermindern sollen. Zweitens liefern die Ergebnisse empirische Evidenz für theoretische Annahmen darüber, wie das typisch entwickelte Gehirn visuelle Kommunikationssignale verarbeitet. Diese Erkenntnisse erweitern maßgeblich unser aktuelles Wissen und zukünftige Forschungsansätze zur zwischenmenschlichen Kommunikation. Außerdem können sie neue Interventionsansätze zur Förderung von Kommunikationsfähigkeiten hervorbringen. / Communication is ubiquitous in our everyday life. Yet, individuals with autism spectrum disorder (ASD) have difficulties in social interactions and to recognize socially relevant signals from the face and the voice. Such impairments can vastly affect the quality of life - a profound understanding of the mechanisms behind these difficulties is thus strongly required. In the current dissertation, I focused on sensory brain mechanisms that underlie the perception of emotionally neutral communication signals that so far have gained little attention in ASD research. I studied the malleability of voice-identity processing using intranasal administration of oxytocin, and thus the potential to alleviate voice-identity recognition impairments in ASD. Furthermore, I investigated brain mechanisms that underlie recognition difficulties for visual speech in ASD, as until now evidence on visual-speech recognition in ASD was limited to behavioral findings. I applied methods of functional magnetic resonance imaging, eye tracking, and behavioral testing. The contribution of the present dissertation is twofold. First, the findings corroborate the view that atypical sensory perception is a critical cornerstone for understanding of social difficulties in ASD. Dysfunction of visual and auditory sensory brain regions might contribute to difficulties in processing aspects of communication signals in ASD and modulate the efficacy of interventions for improving the behavioral deficits. Second, the findings deliver empirical support for a recent theoretical model of how the typically developing brain perceives dynamic faces. This improved our current knowledge about brain processing of visual communication signals in the typically developing population. Advanced scientific knowledge about human communication, as provided in the current dissertation, propels further empirical research and development of clinical interventions that aim to promote communication abilities in affected individuals.
|
Page generated in 0.0627 seconds