• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 26
  • 18
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Διεπαφή ανθρωπίνου νοός - υπολογιστή

Κοροβέσης, Γεώργιος 16 June 2011 (has links)
Προτείνουμε μια προσέγγιση για να αναλύσουμε τα δεδομένα που συλλέγουμε από το παράδειγμα του Ορθογράφου P300, χρησιμοποιώντας την τεχνική μηχανικής μάθησης, support vector machines. Στο συγκεκριμένο πλαίσιο κατηγοριοποίησης, πετύχαμε την σωστή λύση μετά από πέντε επαναλήψεις. Ενώ η κατηγοριοποίηση στους διαγωνισμούς BCI είναι για offline ανάλυση, η προσέγγιση μας μπορεί να θεωρηθεί ως μια online λύση για τον πραγματικό κόσμο. Είναι γρήγορη, απαιτεί λίγες (λιγότερες από 10) θέσεις ηλεκτροδίων, απαιτεί μόνο ένα μικρό ποσοστό προεπεξεργασίας και η επιλογή των τιμών για κρίσιμες παραμέτρους έχει αυτοματοποιηθεί. / We propose an approach to analyze data from the P300 speller paradigm using the machine-learning technique support vector machines. In a conservative classification scheme, we found the correct solution after five repetitions. While the classification within the BCI competition is designed for offline analysis, our approach is also well-suited for a real-world online solution: It is fast, requires few electrode positions (less than 10), demands only a small amount of preprocessing and selection of values for critical parameters is automated.
12

Pré-processamento, extração de características e classificação offline de sinais eletroencefalográficos para uso em sistemas BCI

Machado, Juliano Costa January 2012 (has links)
O uso de sistemas denominados Brain Computer Interface, ou simplesmente BCI, para controle de dispositivos tem gerado cada vez mais trabalhos de análise de sinais de EEG, principalmente devido ao fato do desenvolvimento tecnológico dos sistemas de processamento de dados, trazendo novas perspectiva de desenvolvimento de equipamentos que auxiliem pessoas com debilidades motoras. Neste trabalho é abordado o comportamento dos classificadores LDA (Discriminante Linear de Fisher) e o classificador Naive Bayes para classificação de movimento de mão direita e mão esquerda a partir da aquisição de sinais eletroencefalográficos. Para análise destes classificadores foram utilizadas como características de entrada a energia de trechos do sinal filtrados por um passa banda com frequências dentro dos ritmos sensório-motor e também foram utilizadas componentes de energia espectral através do periodograma modificado de Welch. Como forma de pré-processamento também é apresentado o filtro espacial Common Spatial Pattern (CSP) de forma a aumentar a atividade discriminativa entre as classes de movimento. Foram obtidas taxas de acerto de até 70% para a base de dados geradas neste trabalho e de até 88% utilizando a base de dados do BCI Competition II, taxas de acertos compatíveis com outros trabalhos na área. / Brain Computer Interface (BCI) systems usage for controlling devices has increasingly generated research on EEG signals analysis, mainly because the technological development of data processing systems has been offering a new perspective on developing equipment to assist people with motor disability. This study aims to examine the behavior of both Fisher's Linear Discriminant (LDA) and Naive Bayes classifiers in determining both the right and left hand movement through electroencephalographic signals. To accomplish this, we considered as input feature the energy of the signal trials filtered by a band pass with sensorimotor rhythm frequencies; spectral power components from the Welch modified periodogram were also used. As a preprocessing form, the Common Spatial Pattern (CSP) filter was used to increase the discriminative activity between classes of movement. The database created from this study reached hit rates of up to 70% while the BCI Competition II reached hit rates up to 88%, which is consistent with the literature.
13

Merging brain-computer interfaces and virtual reality : A neuroscientific exploration

Boldeanu, Silvia January 2018 (has links)
Brain-computer interfaces (BCIs) blend methods and concepts researched by cognitive neuroscience, electrophysiology, computer science and engineering, resulting in systems of bi-directional information exchange directly between brain and computer. BCIs contribute to medical applications that restore communication and mobility for disabled patients and provide new forms of sending information to devices for enhancement and entertainment. Virtual reality (VR) introduces humans into a computer-generated world, tackling immersion and involvement. VR technology extends the classical multimedia experience, as the user is able to move within the environment, interact with other virtual participants, and manipulate objects, in order to generate the feeling of presence. This essay presents the possibilities of merging BCI with VR and the challenges to be tackled in the future. Current attempts to combine BCI and VR technology have shown that VR is a useful tool to test the functioning of BCIs, with safe, controlled and realistic experiments; there are better outcomes for VR and BCI combinations used for medical purposes compared to solely BCI training; and, enhancement systems for healthy users seem promising with VR-BCIs designed for home users. Future trends include brain-to-brain communication, sharing of several users’ brain signals within the virtual environment, and better and more efficient interfaces.
14

Pré-processamento, extração de características e classificação offline de sinais eletroencefalográficos para uso em sistemas BCI

Machado, Juliano Costa January 2012 (has links)
O uso de sistemas denominados Brain Computer Interface, ou simplesmente BCI, para controle de dispositivos tem gerado cada vez mais trabalhos de análise de sinais de EEG, principalmente devido ao fato do desenvolvimento tecnológico dos sistemas de processamento de dados, trazendo novas perspectiva de desenvolvimento de equipamentos que auxiliem pessoas com debilidades motoras. Neste trabalho é abordado o comportamento dos classificadores LDA (Discriminante Linear de Fisher) e o classificador Naive Bayes para classificação de movimento de mão direita e mão esquerda a partir da aquisição de sinais eletroencefalográficos. Para análise destes classificadores foram utilizadas como características de entrada a energia de trechos do sinal filtrados por um passa banda com frequências dentro dos ritmos sensório-motor e também foram utilizadas componentes de energia espectral através do periodograma modificado de Welch. Como forma de pré-processamento também é apresentado o filtro espacial Common Spatial Pattern (CSP) de forma a aumentar a atividade discriminativa entre as classes de movimento. Foram obtidas taxas de acerto de até 70% para a base de dados geradas neste trabalho e de até 88% utilizando a base de dados do BCI Competition II, taxas de acertos compatíveis com outros trabalhos na área. / Brain Computer Interface (BCI) systems usage for controlling devices has increasingly generated research on EEG signals analysis, mainly because the technological development of data processing systems has been offering a new perspective on developing equipment to assist people with motor disability. This study aims to examine the behavior of both Fisher's Linear Discriminant (LDA) and Naive Bayes classifiers in determining both the right and left hand movement through electroencephalographic signals. To accomplish this, we considered as input feature the energy of the signal trials filtered by a band pass with sensorimotor rhythm frequencies; spectral power components from the Welch modified periodogram were also used. As a preprocessing form, the Common Spatial Pattern (CSP) filter was used to increase the discriminative activity between classes of movement. The database created from this study reached hit rates of up to 70% while the BCI Competition II reached hit rates up to 88%, which is consistent with the literature.
15

Pré-processamento, extração de características e classificação offline de sinais eletroencefalográficos para uso em sistemas BCI

Machado, Juliano Costa January 2012 (has links)
O uso de sistemas denominados Brain Computer Interface, ou simplesmente BCI, para controle de dispositivos tem gerado cada vez mais trabalhos de análise de sinais de EEG, principalmente devido ao fato do desenvolvimento tecnológico dos sistemas de processamento de dados, trazendo novas perspectiva de desenvolvimento de equipamentos que auxiliem pessoas com debilidades motoras. Neste trabalho é abordado o comportamento dos classificadores LDA (Discriminante Linear de Fisher) e o classificador Naive Bayes para classificação de movimento de mão direita e mão esquerda a partir da aquisição de sinais eletroencefalográficos. Para análise destes classificadores foram utilizadas como características de entrada a energia de trechos do sinal filtrados por um passa banda com frequências dentro dos ritmos sensório-motor e também foram utilizadas componentes de energia espectral através do periodograma modificado de Welch. Como forma de pré-processamento também é apresentado o filtro espacial Common Spatial Pattern (CSP) de forma a aumentar a atividade discriminativa entre as classes de movimento. Foram obtidas taxas de acerto de até 70% para a base de dados geradas neste trabalho e de até 88% utilizando a base de dados do BCI Competition II, taxas de acertos compatíveis com outros trabalhos na área. / Brain Computer Interface (BCI) systems usage for controlling devices has increasingly generated research on EEG signals analysis, mainly because the technological development of data processing systems has been offering a new perspective on developing equipment to assist people with motor disability. This study aims to examine the behavior of both Fisher's Linear Discriminant (LDA) and Naive Bayes classifiers in determining both the right and left hand movement through electroencephalographic signals. To accomplish this, we considered as input feature the energy of the signal trials filtered by a band pass with sensorimotor rhythm frequencies; spectral power components from the Welch modified periodogram were also used. As a preprocessing form, the Common Spatial Pattern (CSP) filter was used to increase the discriminative activity between classes of movement. The database created from this study reached hit rates of up to 70% while the BCI Competition II reached hit rates up to 88%, which is consistent with the literature.
16

EEG enhancement for EEG source localization in brain-machine speller / EEG enhancement for EEG source localization in brain-machine speller

Babaeeghazvini, Parinaz January 2013 (has links)
A Brain-Computer Interface (BCI) is a system to communicate with external world through the brain activity. The brain activity is measured by Electro-Encephalography (EEG) and then processed by a BCI system. EEG source reconstruction could be a way to improve the accuracy of EEG classification in EEGbased brain–computer interface (BCI). In this thesis BCI methods were applied on derived sources which by their EEG enhancement it became possible to obtain a more accurate EEG detection and brought a new application to BCI technology that are recognition of writing letters imagery from brain waves. The BCI system enables people to write and type letters by their brain activity (EEG). To this end, first part of the thesis is dedicated to EEG source reconstruction techniques to select the most optimal EEG channels for task classification purposes. Due to this reason the changes in EEG signal power from rest state to motor imagery task was used, to find the location of an active single equivalent dipole. Implementing an inverse problem solution on the power changes by Multiple Sparse Priors (MSP) method generated a scalp map where its fitting showed the localization of EEG electrodes. Having the optimized locations the secondary objective was to choose the most optimal EEG features and rhythm for an efficient classification. This became possible by feature ranking, 1- Nearest Neighbor leave-one-out. The feature vectors were computed by applying the combined methods of multitaper method, Pwelch. The features were classified by several methods of Normal densities based quadratic classifier (qdc), k-nearest neighbor classifier (knn), Mixture of Gaussians classification and Train neural network classifier using back-propagation. Results show that the selected features and classifiers are able to recognize the imagination of writing alphabet with the high accuracy. / BCI controls external devices and interacts with the environment by brain signals. Measured EEG signals over the motor cortex exhibit changes in power related to the movements or imaginations which are executed in motor tasks [1]. These changes declare increase or decrease of power in the alpha (8Hz-13Hz), and beta (13Hz-28Hz) frequency bands from resting state to motor imagery task that known as event related synchronization (in case of power increasing) and desynchronization (in case of power decreasing) [2]. The necessity to communicate with the external world for locked-in state (LIS) patients (a paralyzed patient who only communicates with eyes), made doctors and engineers motivated to develop a BCI technology for typing letters through brain commands. Many researches have been done around this area to ascertain the dream of typing for handicapped. In the brain some regions of the cerebral cortex (motor cortex) are involved in the planning, control, and execution of voluntary movements. Electroencephalography (EEG) signals are electrical potential generated by the nerve cells in the cerebral cortex. In order to execute motoric tasks, the EEG signals are appeared over the motor cortex [1]. The measured brain response to a stimulus is called eventrelated potential (ERP). P300-event related potential (ERP) is an evoked neuron response to an external auditory or visual stimulus that is detectable in scalp-recorded EEG (The P300 is evoked potential which occurs across the parieto-central on the skull 300 ms after applying the stimulus). Farwell and Donchin have proven in a P300-based BCI speller [3] that P300 response is a reliable signal for controlling a BCI system. They described the P300 speller, in which alphanumeric characters are represented in a matrix grid of six-by-six matrix. The user should focus on one of the 36 character cells while each row and column of the grid is intensified randomly and sequentially. The P300, observed in EEG signals, is created by the intersection of the target row and column which causes detection of the target stimuli with a probability of 1/6 (in case of high accuracy of flashing operation). Also when the target stimulus is rarely presented in the random sequence of stimuli causes a neural reaction to unpredictable but recognizable event and a P300 response is evoked [3]. Generally when the subject is involved with the task to recognize the targets, the P300 wave happens and the signal amplitude varies with the unlikelihood of the targets. Its dormancy changes with the difficulty of recognizing the target stimulus from the standard stimuli [3].The attended character of the matrix can be extracted by proper feature extraction and classification of P300. A plenty of procedures for feature extraction and classification have been applied to improve the performance of originally reported speller [3], such as stepwise linear discriminate analysis (SWLDA) [4, 5], wavelets [1], support vector machines [6, 7, 8] and matched filtering [9]. Till now, BCI-related P300 research has mostly considered on signals from standard P300 scalp locations. While in [10, 11, 12, 13, 14, 15, 16] it has been proven that the use of additional locations, especially posterior sites, may improve classification accuracy, but it has not been addressed to particular offline and online studies. Recently, auditory version improvement of the visual P300 speller allows locked in patients who have problem in the visual system to use the P300 speller system by relating two numbers to each letter which indicate the row and column of letter position [17]. Now a new technology is needed which can substitute a keyboard with no alphabet menu. The technology will be handy for blind people and useful for healthy persons who need to work hands free with their computer or mobile. The aim of this thesis is to improve EEG detection through source localization for a new BCI application to type with EEG signals without using alphabet menu. / +98-9359576229
17

P300-Based Brain-Computer Interface (BCI) Event-Related Potentials (ERPs): People With Amyotrophic Lateral Sclerosis (ALS) vs. Age-Matched Controls

McCane, Lynn M., Heckman, Susan M., McFarland, Dennis J., Townsend, George, Mak, Joseph N., Sellers, Eric W., Zeitlin, Debra, Tenteromano, Laura M., Wolpaw, Jonathan R., Vaughan, Theresa M. 01 January 2015 (has links)
Objective: Brain-computer interfaces (BCIs) aimed at restoring communication to people with severe neuromuscular disabilities often use event-related potentials (ERPs) in scalp-recorded EEG activity. Up to the present, most research and development in this area has been done in the laboratory with young healthy control subjects. In order to facilitate the development of BCI most useful to people with disabilities, the present study set out to: (1) determine whether people with amyotrophic lateral sclerosis (ALS) and healthy, age-matched volunteers (HVs) differ in the speed and accuracy of their ERP-based BCI use; (2) compare the ERP characteristics of these two groups; and (3) identify ERP-related factors that might enable improvement in BCI performance for people with disabilities. Methods: Sixteen EEG channels were recorded while people with ALS or healthy age-matched volunteers (HVs) used a P300-based BCI. The subjects with ALS had little or no remaining useful motor control (mean ALS Functional Rating Scale-Revised 9.4 (±9.5SD) (range 0-25)). Each subject attended to a target item as the items in a 6. ×. 6 visual matrix flashed. The BCI used a stepwise linear discriminant function (SWLDA) to determine the item the user wished to select (i.e., the target item). Offline analyses assessed the latencies, amplitudes, and locations of ERPs to the target and non-target items for people with ALS and age-matched control subjects. Results: BCI accuracy and communication rate did not differ significantly between ALS users and HVs. Although ERP morphology was similar for the two groups, their target ERPs differed significantly in the location and amplitude of the late positivity (P300), the amplitude of the early negativity (N200), and the latency of the late negativity (LN). Conclusions: The differences in target ERP components between people with ALS and age-matched HVs are consistent with the growing recognition that ALS may affect cortical function. The development of BCIs for use by this population may begin with studies in HVs but also needs to include studies in people with ALS. Their differences in ERP components may affect the selection of electrode montages, and might also affect the selection of presentation parameters (e.g., matrix design, stimulation rate). Significance: P300-based BCI performance in people severely disabled by ALS is similar to that of age-matched control subjects. At the same time, their ERP components differ to some degree from those of controls. Attention to these differences could contribute to the development of BCIs useful to those with ALS and possibly to others with severe neuromuscular disabilities.
18

<b>Collaborative Human and Computer Controls of Smart Machines</b>

Hussein Bilal (17565258) 07 December 2023 (has links)
<p dir="ltr">A Human-Machine Interaction (HMI) refers to a mechanism to support the direct interactions of humans and machines with the objective for the synthesis of machine intelligence and autonomy. The demand to advance in this field of study for intelligence controls is continuously growing. Brain-Computer Interface (BCI) is one type of HMIs that utilizes a human brain to enable direct communication of the human subject with a machine. This technology is widely explored in different fields to control external devices using brain signals.</p><p dir="ltr">This thesis is driven by two key observations. The first one is the limited number of Degrees of Freedom (DoF) that existing BCI controls can control in an external device; it becomes necessary to assess the controllability when choosing a control instrument. The second one is the differences of decision spaces of human and machine when both of them try to control an external device. To fill the gaps in these two aspects, there is a need to design an additional functional module that is able to translate the commands issued by human into high-frequency control commands that can be understood by machines. These two aspects has not been investigated thoroughly in literatures.</p><p dir="ltr">This study focuses on training, detecting, and using humans’ intents to control intelligent machines. It uses brain signals which will be trained and detected in form of Electroencephalography (EEG), brain signals will be used to extract and classify human intents. A selected instrument, Emotiv Epoc X, is used for pattern training and recognition based on its controllability and features among other instruments. A functional module is then developed to bridge the gap of frequency differences between human intents and motion commands of machine. A selected robot, TinkerKit Braccio, is then used to illustrate the feasibility of the developed module through fully controlling the robotic arm using human’s intents solely.</p><p dir="ltr">Multiple experiments were done on the prototyped system to prove the feasibility of the proposed model. The accuracy to send each command, and hence the accuracy of the system to extract each intent, exceeded 75%. Then, the feasibility of the proposed model was also tested through controlling the robot to follow pre-defined paths, which was obtained through designing a Graphical-User Interface (GUI). The accuracy of each experiment exceeded 90%, which validated the feasibility of the proposed control model.</p>
19

Conception d'une architecture embarquée adaptable pour le déploiement d'applications d'interface cerveau machine / Design of an adaptable embedded architecture for the deployment of brain-machine interface applications

Belwafi, Kais 28 September 2017 (has links)
L'objectif de ces travaux de recherche est l'étude et le développement d'un système ICM embarqué en utilisant la méthodologie de conception conjointe afin de satisfaire ses contraintes spécifiques. Il en a découlé la constitution d'un système ICM complet intégrant un système d'acquisition OpenBCI et un système de traitement à base de FPGA. Ce système pourrait être utilisé dans des contextes variés : médicale (pour les diagnostiques précoces des pathologies), technologique (informatique ubiquitaire), industriel (communication avec des robots), ludique (contrôler un joystick dans les jeux vidéo), etc. Dans notre contexte d’étude, la plateforme ICM proposée a été réalisée pour assister les personnes à mobilité réduite à commander les équipements domestiques. Nous nous sommes intéressés en particulier à l'étude et à l'implémentation des modules de filtrage adaptatif et dynamique, sous forme d'un coprocesseur codé en HDL afin de réduire son temps d'exécution car c'est le bloc le plus critique de la chaine ICM. Quant aux algorithmes d'extraction des caractéristiques et de classification, ils sont exécutés par le processeur Nios-II sous son système d'exploitation en ANSI-C. Le temps de traitement d'un trial par notre système ICM réalisé est de l'ordre de 0.4 s/trial et sa consommation ne dépasse guère 0.7 W. / The main purpose of this thesis is to study and develop an embedded brain computer interface (BCI) system using HW/SW methodology in order to satisfy the system specifications. A complete BCI system integrated in an acquisition system (OpenBCI) and a hardware platform based on the FPGA were achieved. The proposed system can be used in a variety of contexts: medical (for early diagnosis of pathologies, assisting people with severe disabilities to control home devices system through thought), technological (ubiquitous computing), industrial (communication with Robots), games (control a joystick in video games), etc. In our study, the proposed ICM platform was designed to control home devices through the thought of people with severe disabilities. A particular attention has been given to the study and implementation of the filtering module, adaptive and dynamic filtering, in the form of a coprocessor coded in HDL in order to reduce its execution time as it is the critical block in the returned ICM algorithms. For the feature extraction and classification algorithms, they are executed in the Nios-II processor using ANSI-C language. The prototype operates at 200 MHz and performs a real time classification with an execution delay of 0.4 second per trial. The power consumption of the proposed system is about 0.7 W.
20

Méthodes pour l'électroencéphalographie multi-sujet et application aux interfaces cerveau-ordinateur / Methods for multi-subject electroencephalography and application to brain-computer interfaces

Korczowski, Louis 17 October 2018 (has links)
L'étude par neuro-imagerie de l'activité de plusieurs cerveaux en interaction (hyperscanning) permet d'étendre notre compréhension des neurosciences sociales. Nous proposons un cadre pour l'hyperscanning utilisant les interfaces cerveau-ordinateur multi-utilisateur qui inclut différents paradigmes sociaux tels que la coopération ou la compétition. Les travaux de cette thèse comportent trois contributions interdépendantes. Notre première contribution est le développement d'une plateforme expérimentale sous la forme d'un jeu vidéo multijoueur, nommé Brain Invaders 2, contrôlé par la classification de potentiels évoqués visuels enregistrés par électroencéphalographie (EEG). Cette plateforme est validée par deux protocoles expérimentaux comprenant dix-neuf et vingt-deux paires de sujets et utilise différentes approches de classification adaptative par géométrie riemannienne. Ces approches sont théoriquement et expérimentalement comparées et nous montrons la supériorité de la fusion des classifieurs indépendants sur la classification d'un hypercerveau durant la seconde contribution. L'analyse de coïncidence des signaux entre les individus est une approche classique pour l'hyperscanning, elle est pourtant difficile quand les signaux EEG concernés sont transitoires avec une grande variabilité (intra- et inter-sujet) spatio-temporelle et avec un faible rapport signal-à-bruit. En troisième contribution, nous proposons un nouveau modèle composite de séparation aveugle de sources physiologiquement plausibles permettant de compenser cette variabilité. Une solution par diagonalisation conjointe approchée est proposée avec une implémentation d'un algorithme de type Jacobi. A partir des données de Brain Invaders 2, nous montrons que cette solution permet d'extraire simultanément des sources d'artéfacts, des sources d'EEG évoquées et des sources d'EEG continues avec plus de robustesse et de précision que les modèles existants. / The study of several brains interacting (hyperscanning) with neuroimagery allows to extend our understanding of social neurosciences. We propose a framework for hyperscanning using multi-user Brain-Computer Interfaces (BCI) that includes several social paradigms such as cooperation or competition. This dissertation includes three interdependent contribution. The first contribution is the development of an experimental platform consisting of a multi-player video game, namely Brain Invaders 2, controlled by classification of visual event related potentials (ERP) recorded by electroencephalography (EEG). The plateform is validated through two experimental protocols including nineteen and twenty two pairs of subjects while using different adaptive classification approaches using Riemannian geometry. Those approaches are theoretically and experimentally compared during the second contribution ; we demonstrates the superiority in term of accuracy of merging independent classifications over the classification of the hyperbrain during the second contribution. Analysis of inter-brain synchronizations is a common approach for hyperscanning, however it is challenging for transient EEG waves with an great spatio-temporal variability (intra- and inter-subject) and with low signal-to-noise ratio such as ERP. Therefore, as third contribution, we propose a new blind source separation model, namely composite model, to extract simultaneously evoked EEG sources and ongoing EEG sources that allows to compensate this variability. A solution using approximate joint diagonalization is given and implemented with a fast Jacobi-like algorithm. We demonstrate on Brain Invaders 2 data that our solution extracts simultaneously evoked and ongoing EEG sources and performs better in term of accuracy and robustness compared to the existing models.

Page generated in 0.4991 seconds