Spelling suggestions: "subject:"bridge neck"" "subject:"bridge beck""
31 |
Investigation of Concrete Mixtures to Reduce Differential Shrinkage Cracking in Inverted T Beam SystemPulumati, Vijaykanth 23 May 2018 (has links)
The inverted T-beam system provides an accelerated bridge construction alternative. The system consists of adjacent precast inverted T-beams finished with a cast-in-place concrete topping. The system offers enhanced performance against reflective cracking and reduces the likelihood of cracking due to time dependent effects. Differential shrinkage is believed to be one of the causes of deck cracking in inverted T-beam systems. The objective of this study was to develop mix designs that exhibit lower shrinkage and higher creep compared to typical deck mixtures, recommend a prescriptive mix design and a performance criterion to VDOT that can be further investigated and used in the inverted T-beam system to combat effects of differential shrinkage.
Ten different mix designs using different strategies to reduce shrinkage were tested for their compressive strength, splitting tensile strength, modulus of elasticity and unrestrained shrinkage. The four best performing mixes were selected for further study of their time dependent properties. The test data was compared against the data from various prediction models to determine the model that closely predicts the measured data. It was observed that ACI 209.2R-08 model best predicted the time dependent properties for the four mixes tested in this project. Tensile stresses in the composite cross-section of deck and girder, created due to difference in shrinkage and creep are quantified using an age adjusted effective modulus method.
In this analysis, it was observed that mixes with normal weight coarse aggregate (NWCA) developed smaller stresses compared to those of mixes with lightweight coarse aggregate (LWCA). Mixes with fly ash as supplementary cementitious material (SCM) developed smaller stresses at the bottom of deck when compared to mixes with slag as the SCM. / Master of Science / The inverted T-beam system provides an accelerated bridge construction alternative. The system consists of adjacent precast inverted T-beams finished with a cast-in-place concrete deck. The system reduces the likelihood of cracking due to time dependent deformations of concrete – Shrinkage and Creep. The difference in rate of shrinkage of deck and the girder, also called as differential shrinkage, is believed to be one of the causes of deck cracking in inverted T-beam systems.
The objective of this study was to develop concrete mix designs that exhibit lower shrinkage and higher creep that can be further investigated and used in the inverted T-beam system to combat effects of differential shrinkage. Studies resulted in the observation that ACI 209.2R-08 – model used to predict concrete behavior, best predicts the time dependent properties of the concrete tested in this project. Also, mixes with normal weight coarse aggregate (NWCA) developed smaller stresses compared to those of mixes with lightweight coarse aggregate (LWCA). Mixes with fly ash as supplementary cementitious material (SCM) developed smaller stresses when compared to mixes with slag as the SCM.
|
32 |
Acoustic emission monitoring of fiber reinforced bridge panelsFlannigan, James Christopher January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Youqi Wang / Two fiber reinforced polymer (FRP) bridge deck specimens were analyzed by means of acoustic emission (AE) monitoring during a series of loading cycles performed at various locations on the composite sandwich panels' surfaces. These panels were subjected to loads that were intended to test their structural response and characteristics without exposing them to a failure scenario. This allowed the sensors to record multiple data sets without fear of having to be placed on multiple panels that could have various characteristics that alter the signals recorded.
The objective throughout the analysis ias to determine how the acoustic signals respond to loading cycles and various events can affect the acoustical data. In the process of performing this examination several steps were taken including threshold application, data collection, and sensor location analysis. The thresholds are important for lowering the size of the files containing the data, while keeping important information that could determine structurally significant information. Equally important is figuring out where and how the sensors should be placed on the panels in the first place in relation to other sensors, panel features and supporting beams.
The data was subjected to analysis involving the response to applied loads, joint effects and failure analysis. Using previously developed techniques the information gathered was also analyzed in terms of what type of failure could be occurring within the structure itself. This somewhat aided in the analysis after an unplanned failure event occurred to determine what cause or causes might have lead to the occurrence.
The basic analyses were separated into four sets, starting with the basic analysis to determine basic correlations to the loads applied. This was followed by joint and sensor location analyses, both of which took place using a two panel setup. The last set was created upon matrix failure of the panel and the subsequent investigation.
|
33 |
FATIGUE BEHAVIOR OF CONCRETE BRIDGE DECKS CAST ON GFRP STAY-IN-PLACE STRUCTURAL FORMS AND STATIC PERFORMANCE OF GFRP-REINFORCED DECK OVERHANGSRichardson, Patrick 18 September 2013 (has links)
The first part of the thesis addresses the fatigue performance of concrete bridge decks with GFRP stay-in-place structural forms replacing the bottom layer of rebar. The forms were either flat plate with T-up ribs joined using lap splices, or corrugated forms joined through pin-and-eye connections. The decks were supported by simulated Type III precast AASHTO girders spaced at 1775mm (6ft.). Two surface preparations were examined for each GFRP form, either using adhesive coating that bonds to freshly cast concrete, or simply cleaning the surface before casting. For the bonded deck with flat-ribbed forms, adhesive bond and mechanical fasteners were used at the lap splice, whereas the lap splice of the unbonded deck had no adhesive or fasteners. All the decks survived 3M cycles at 123kN service load of CL625 CHBDC design truck. The bonded flat-ribbed-form deck survived an additional 2M cycles at a higher load simulating a larger girder spacing of 8ft. Stiffness degradations were 9-33% with more reduction in the unbonded specimens. Nonetheless, live load deflections of all specimens remained below span/1600. The residual ultimate strengths after fatigue were reduced by 5% and 27% for the flat-ribbed and corrugated forms, respectively, but remained 7 and 3 times higher than service load.
The second part of the thesis investigates the performance of bridge deck overhangs reinforced by GFRP rebar. Overhangs of full composite slab-on-girder bridge decks at 1:2.75 scale were tested monotonically under an AASHTO tire pad. Five tests were conducted on overhangs of two lengths: 260mm and 516mm, representing scaled overhangs of 6ft. and 8ft. girder spacing, respectively. The 260mm overhang was completely reinforced with GFRP rebar while the 516mm overhang consisted of a GFRP-reinforced section and a steel-reinforced section. The peak loads were approximately 2 to 3 times the established equivalent service load of 24.3kN, even though the overhangs were not designed for flexure according to the CHBDC but rather with lighter minimum reinforcement in anticipation of shear failure. The failure mode
Abstract
ii
of each overhang section was punching shear. The steel-reinforced overhang section exhibited a greater peak load capacity (13.5%) and greater deformability (35%) when compared to the GFRP-reinforced overhang section. / Thesis (Master, Civil Engineering) -- Queen's University, 2013-09-17 18:54:18.131
|
34 |
Sustainable and durable bridge decksShearrer, Andrew Joseph January 1900 (has links)
Master of Science / Department of Civil Engineering / Robert J. Peterman / Epoxy polymer overlays have been used for decades on existing bridge decks to protect the deck and extend its service life. The polymer overlay’s ability to seal a bridge deck is now being specified for new construction. Questions exist about the amount of drying time needed to achieve an acceptable concrete moisture content to ensure an adequate bond to the polymer overlay. Current Kansas Department of Transportation (KDOT) specifications for new bridge decks call a 14 day wet curing period followed by 21 days of drying (Kansas DOT, 2007) If not enough drying is provided, the moisture within the concrete can form water vapor pressure at the overlay interface and induce delamination. If too much drying time is provided projects are delayed, which can increase the total project cost or even delay overlay placement until the next spring.
A testing procedure was developed to simulate a bridge deck in order to test the concrete moisture content and bonding strength of the overlay. Concrete slabs were cast to test typical concrete and curing conditions for a new bridge deck. Three concrete mixtures were tested to see what effect the water –cement ratio and the addition of fly ash might have on the overlay bond strength. Wet curing occurred at 3 different temperatures (40°F, 73°F, and 100°F) to see if temperature played a part in the bond strength as well. The concrete was then allowed to dry for 3, 7, 14, or 21 days. Five epoxy-polymer overlay systems that had been preapproved by KDOT were each used in conjunction with the previously mentioned concrete and curing conditions.
After, the slabs were setup to perform pull-off tests to test the tensile rupture strength. The concrete slabs with the different epoxy overlays were heated to 122-125°F to replicate summer bridge deck temperatures. Half of the pull-off tests were performed when the slabs were heated and half were performed once the slabs had cooled back down to 73°±5°F.
Results from the pull-off tests as well as results from a moisture meter taken on the concrete prior to the overlay placement were compared and analyzed. Testing conditions were compared with each other to see which had a larger effect on the epoxy polymer overlay’s bond strength.
|
35 |
Lateral load distribution for steel beams supporting an FRP panel.Poole, Harrison Walker January 1900 (has links)
Master of Science / Department of Civil Engineering / Hani G. Melhem / Fiber Reinforced Polymer (FRP) is a relatively new material used in the field of civil engineering. FRP is composed of fibers, usually carbon or glass, bonded together using a polymer adhesive and formed into the desired structural shape. Recently, FRP deck panels have been viewed as an attractive alternative to concrete decks when replacing deteriorated bridges. The main advantages of an FRP deck are its weight (roughly 75% lighter than concrete), its high strength-to-weight ratio, and its resistance to deterioration. In bridge design, AASHTO provides load distributions to be used when determining how much load a longitudinal beam supporting a bridge deck should be designed to hold. Depending on the deck material along with other variables, a different design distribution will be used. Since FRP is a relatively new material used for bridge design, there are no provisions in the AASHTO code that provides a load distribution when designing beams supporting an FRP deck. FRP deck panels, measuring 6 ft x 8.5’, were loaded and analyzed at KSU over the past 4 years. The research conducted provides insight towards a conservative load distribution to assist engineers in future bridge designs with FRP decks.
Two separate test periods produced data for this thesis. For the first test period, throughout the year of 2007, a continuous FRP panel was set up at the Civil Infrastructure Systems Laboratory at Kansas State University. This continuous panel measured 8.5 ft by 6 ft x 6 in. thick and was supported by 4 Grade A572 HP 10 x 42 steel beams. The beam spacing’s, along the 8.5 ft direction, were 2.5 ft-3.5 ft-2.5 ft. Stain gauges were mounted at mid-span of each beam to monitor the amount of load each beam was taking under a certain load. Linear variable distribution transformers (LVDT) were mounted at mid-span of each beam to measure deflection. Loads were placed at the center of the panel, with reference to the 6 ft direction and at several locations along the 8.5 ft direction. Strain and deflection readings were taken in order to determine the amount of load each beam resisted for each load location.
The second period of testing started in the fall of 2010 and extended into January of 2011. This consisted of a simple-span/cantilever test set-up. The test set-up consisted of, in the 8.5 ft direction, a simply supported span of 6 ft with a 2.5 ft cantilever on one side. As done previously both beams had strain gauges along with LVDTs mounted at mid-span. There were also strain gauges were installed spaced at 1.5ft increments along one beam in order to analyze the beam behavior under certain loads. Loads were once again applied in the center of the 6 ft direction and strain and deflection readings were taken at several load locations along the 8.5 ft direction. The data was analyzed after all testing was completed. The readings from the strain gauges mounted in 1.5 ft increments along the steel beam on one side of the simple span test set-up were used to produce moment curves for the steel beam at various load locations. These moment curves were analyzed to determine how much of the panel was effectively acting on the beam when loads were placed at various distances away from the beam. Using these “effective lengths,” along with the strain taken from the mid-span of each beam, the loads each beam was resisting for different load locations were determined for both the continuously supported panel and the simply supported/cantilever panel data. Using these loads, conservative design factors were determined for FRP panels. These factors are S/5.05 for the simply supported panel and S/4.4 for the continuous panel, where “S” is the support beam spacing. Deflections measurements were used to validate the results. Percent errors, based on experimental and theoretical deflections, were found to be in the range of 10 percent to 40 percent depending on the load locations for the results in this thesis.
|
36 |
Chloride Concentration and Blow-Through Analysis for Concrete Bridge Decks Rehabilitated Using Hydro-DemolitionRoper, Elizabeth Ashleigh 01 April 2018 (has links)
The objectives of this research were 1) to investigate the effects of hydrodemolition treatment timing on chloride concentration profiles in concrete bridge decks for depths of concrete removal below the top mat of reinforcing steel and 2) to investigate factors that influence the occurrence of blow-throughs in concrete bridge decks when hydrodemolition is used. The research results are intended to provide engineers with guidance about the latest timing of hydrodemolition that can maintain a chloride concentration level below 2.0 lb of chloride per cubic yard of concrete at the levels of both the top and bottom mats of reinforcing steel, as well as about conditions that may indicate a higher probability of blow-through during hydrodemolition. The scope of this research included a questionnaire survey of hydrodemolition companies to summarize common practices in the field, numerical modeling of chloride concentration to investigate hydrodemolition treatment timing on typical Utah bridge decks, and structural analysis to investigate factors that influence the occurrence of blow-throughs during hydrodemolition. While some survey respondents indicated that certain parameters vary, the responses are valuable for understanding typical practices and were used to design the numerical experiments. The numerical modeling generated chloride concentration profiles through a 75-year service life given a specific original cover depth (OCD), treatment time, and surface treatment usage. The results indicate that, when a surface treatment is used, the concentration at either the top or bottom mat of reinforcing steel does not reach or exceed 2.0 lb of chloride per cubic yard of concrete after hydrodemolition during the 75 years of simulated bridge deck service life. The results also indicate that, when a surface treatment is not used, the chloride concentration at the top mat of reinforcement exceeds 2.0 lb of chloride per cubic yard of concrete within 10, 15, and 20 years for OCD values of 2.0, 2.5, and 3.0 in., respectively. The numerical experiments generated results in terms of the main effect of each input variable on the occurrence of blow-throughs and interactions among selected input variables. For each analysis, blow-through can be expected when the calculated factor of safety is less than 1.0. The factor of safety significantly increases with increasing values of transverse rebar spacing and concrete compressive strength and decreasing values of depth of removal below the bottom of the top reinforcing mat, orifice size, and water pressure within the ranges of these parameters investigated in this experimentation. The factor of safety is relatively insensitive to jet angle. For both case studies evaluated in this research, the blow-through analysis correctly predicted a high or low potential for blow-through on the given deck.
|
37 |
Development of a Chloride Concentration Sampling Protocol for Concrete Bridge DecksMontgomery, Sharlan Renae 18 March 2014 (has links)
As the primary cause of concrete bridge deck deterioration in the United States is corrosion of the steel reinforcement as a result of the application of chloride-based deicing salts, chloride concentration testing is among the most common techniques for evaluating the condition of a concrete bridge deck. The objectives of this research were to 1) compare concrete drilling and powder collection techniques to develop a sampling protocol for accurately measuring chloride concentrations and 2) determine the number of chloride concentration test locations necessary for adequately characterizing the chloride concentration of a given bridge deck. Laboratory experiments on concrete drilling and powder collection were conducted to compare current concrete powder sampling techniques, including constant and stepwise drilling methods and spoon and vacuum powder collection methods. In addition, three charts were prepared to determine the number of chloride concentration test locations necessary for adequately characterizing the chloride concentration of a given bridge deck. The number of samples is dependent on reliability, spatial variability in chloride concentration, and an allowable difference between sample and population means. For the experiment on drilling, this research shows that the practice of decreasing the size of the drill bit in a stepwise fashion with increasing sampling depth reduces the possibility of abrading concrete from the sides of the hole above the sampling depth, where the chloride concentrations are higher, during drilling of lower lifts. For the experiment on powder collection, this research demonstrates that representative samples of concrete powder can be collected with either a spoon or a vacuum. Based on the results of this research, the stepwise drilling method and either the spoon or vacuum powder collection method are recommended for application. In addition, the charts developed in this research are recommended for estimating the number of chloride concentration test locations necessary for adequately characterizing the chloride concentration of a given bridge deck. This research will be helpful in effectively assessing the condition of concrete bridge decks with respect to chloride-induced corrosion of the reinforcing steel and prioritizing bridge maintenance and rehabilitation projects.
|
38 |
Vertical Electrical Impedance Measurements on Concrete Bridge Decks Using a Large-Area ElectrodeBarton, Jeffrey David 01 August 2018 (has links)
In regions where chloride-based deicing salts are applied to bridge decks, corrosion of the interior steel reinforcement is a major problem. Vertical electrical impedance (VEI) is an effective measurement technique to quantitatively assess the cover protection on bridges against aggressive chemical penetration of reinforced concrete. In its current form, traditional vertical electrical impedance is time-consuming and destructive because a direct connection to the reinforcing steel is required to provide a ground reference. A new method using a large-area electrode (LAE) permits VEI measurement without a direct electrical connection to the steel reinforcement. The LAE creates a nondestructive, semi-direct, low impedance connection between the measurement electronics and the reinforcing steel. In this work, numerical simulations are performed on common electrode arrangements to demonstrate the effectiveness of the LAE when significant variations in concrete conductivity exist. Physical experiments of a large-area electrode are carried out in the laboratory and field to validate the numerical simulations and to provide additional comparisons with the traditional tapped steel reinforcement method. The results of this study are a set of important design considerations for VEI utilizing a LAE to connect to the underlying rebar. Using these design considerations, the large-area electrode method was validated using both an analytical and a finite-element model, laboratory experiments, and field experiments on two bridges in Utah. The validation results indicate the LAE can replace the direct connection to the reinforcing steel. As a result of this work, a multichannel VEI scanner which uses the LAE method was built which can provide VEI information for bridge engineers and managers to better rehabilitate deteriorating reinforced concrete.
|
39 |
Automated Impact Response Sounding for Accelerated Concrete Bridge Deck InspectionLarsen, Jacob Lynn 01 July 2018 (has links)
Infrastructure deterioration is an international problem requiring significant attention. One particular manifestation of this deterioration is the occurrence of sub-surface cracking (delaminations) in reinforced concrete bridge decks. Of many techniques available for inspection, air-coupled impact-echo testing, or sounding, is a non-destructive evaluation technique to determine the presence and location of delaminations based upon the acoustic response of a bridge deck when struck by an impactor. In this work, two automated air-coupled impact echo sounding devices were designed and constructed. Each device included fast and repeatable impactors, moving platforms for traveling across a bridge deck, microphones for air-coupled sensing, distance measurement instruments for keeping track of impact locations, and signal processing modules. First, a single-channel automated sounding device was constructed, followed by a multi channel system that was designed and built from the findings of the single-channel apparatus. The multi channel device performed a delamination inspection in the same manner as the single-channel device but could complete an inspection of an entire traffic lane in one pass. Each device was tested on at least one concrete bridge deck and the delamination maps produced by the devices were compared with maps generated from a traditional chain-drag sounding inspection. The comparison between the two inspection approaches yielded high correlations for bridge deck delamination percentages. Testing with the two devices was more than seven and thirty times faster, respectively, than typical manual sounding procedures. This work demonstrates a technological advance in which sounding can be performed in a manner that makes complete bridge deck scanning for delaminations rapid, safe, and practical.
|
40 |
Analysis of Selected Factors Affecting Concrete Cover Measurements on Bridge DecksHoki, Jeffrey Ryan 17 March 2011 (has links)
The objective of this research was to quantify the effects of selected parameters on the accuracy of concrete cover measurements on bridge decks. This research involved three full-factorial laboratory experiments each designed to investigate one of three primary variables. These primary variables included distance to a parallel adjacent bar, distance to a reinforcement intersection, and incorrect bar size input for the cover meter. Each experiment also involved four secondary variables known to affect cover readings. These secondary variables included actual cover depth, meter brand, antenna type, and bar size. Statistical analyses were performed to determine the significance of each factor. A margin of error of 0.125 in., corresponding to the increase in diameter between successive U.S. standard rebar sizes, was established as the threshold for practical importance in the data analysis. Three primary findings resulted from the three experiments performed in this research. For the meters and antennas tested, the results of the field-of-view experiment indicated that, if the spacing is greater than approximately 4.0 in., the returned readings are within the threshold for practical importance established for this research. The results of the proximity-to-an-intersection experiment indicated that, regardless of where the measurement is taking place in relation to an intersection, the operator can be confident that the errors will be less than 0.125 in. as long as the bar in question is above the intersecting bar. The results of the wrong-bar-size experiment indicated that, if the operator of the cover meter does not know the actual rebar size in question, the measured cover will be within 0.125 in. of the actual cover depth as long as the meter input is within one bar size of the correct value. Obtaining accurate cover measurements on bridge decks is important for quality assurance, service life prediction, and rehabilitation programming.
|
Page generated in 0.0463 seconds