• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 1
  • Tagged with
  • 25
  • 25
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Towards Computational Modeling of Two-dimensional Covalent Organic Frameworks

Raptakis, Antonios 25 January 2022 (has links)
Kovalente organische Frameworks (COFs) haben in den letzten Jahren aufgrund ihrer potenziellen Anwendungen in verschiedenen Bereichen großes Interesse hervorgerufen. Obwohl die Eigenschaften der synthetisierten Materialien empfindlich von den Eigenschaften der entsprechenden organischen Liganden abhängen, ist der Beitrag der einzelnen Bausteine zu den Kristalleigenschaften nicht eindeutig definiert. In dieser Arbeit werden die elektronischen und mechanischen Eigenschaften von einschichtigen zweidimensionalen (2D) COFs untersucht, wobei der Schwerpunkt auf den molekularen Bausteinen liegt. Zunächst wurde die Kristallstruktur als Hooke'sches Federnetzwerk angenommen, und analytische Formeln für 2D-COFs mit quadratischer und hexagonaler Gittertopologie wurden abgeleitet, wobei eine Vorhersage des Kompressionsmoduls aus der Berechnung der Monomer-Federkonstante angestrebt wurde. Alle geschätzten Werte für Moleküle und periodische Strukturen wurden mit der DFTB-Methode (Density Functional based Tight-Binding) berechnet. Benchmarking-Berechnungen mit der Dichtefunktionaltheorie (DFT) wurden eingesetzt, um die Anwendbarkeit der semiempirischen Methode zu überprüfen. In einem zweiten Schritt wurden Methoden vorgeschlagen, um die elektronische Bandstruktur und die elektronischen Eigenschaften von COFs zu verändern, wie z.B. die Änderung von Bindungen oder Linkern, Seitengruppen oder Funktionalisierung und die Erhöhung der Massendichte. Die verschiedenen Methoden ergeben unterschiedliche Eigenschaften der resultierenden Strukturen. Darüber hinaus wurden mehrere Polymere durch periodische Fortsetzung in einer oder zwei Dimensionen auf der Grundlage derselben molekularen Bausteine modelliert. Es wurde ein zweistufiges System auf der Grundlage des Tight-Binding-Ansatzes vorgeschlagen, und dessen Parameter wurden mit Hilfe der Bandoberkante des Valenzbandes und der Bundunterkante des Leitungsbandes abgeschätzt. Ein maschinelles Lernverfahren wurde eingesetzt, um die elektronische Bandlücke auf der Grundlage der gleichen Kernmonomere vorherzusagen. Interessanterweise erbt das 2D-COF die elektronische Lücke von der monomeren Einheit mit der niedrigeren elektronischen Energiedifferenz zwischen besetztem und unbesetztem Band. Schließlich wurde die Protonentautomerisierung in zwei sehr häufig verwendeten Kernmonomeren für 2D-COFs, Porphyrin und Phthalocyanin, und ihren Derivaten untersucht. Die Freie-Energie-Oberfläche wurde mit Quanten-Molekulardynamik-Simulationen durch Kombination von DFTB und Metadynamik berechnet. Durch die Analyse der Potenzialporträts werden die strukturellen Symmetrien des Moleküls in Protonentransferreaktionen widergespiegelt. Ich erwarte, dass die Ergebnisse dieser Arbeit Einsichten für die Synthese von 2D COFs geben werden, welche auf optimierte elektronische Eigenschaften mit hoher struktureller Stabilität abzielt.:ABSTRACT ZUSAMMENFASSUNG 1. INTRODUCTION Motivation Nomenclatures Experimental characterization and computational studies Objectives and outline 2. THEORETICAL AND COMPUTATIONAL BACKGROUND Many-body system Density Functional Theory (DFT) Kohn-Sham auxilary approach and the computational application of DFT Exchange-correlation functional Hybrid functionals Basis-set Pseudo-potentials Tight-binding model Density Functional based Tight-binding model (DFTB) Slater-Koster approach Slater-Koster sets in DFTB Molecular Dynamics and Metadynamics Classical Molecular Dynamics (MD) Quantum Molecular Dynamics (QMD) Metadynamics(MTD) 3. PREDICTING THE BULK MODULUS Conceptualization Equivalent spring constant Two dimensional bulk modulus Computational details COFs with square lattice type Models Molecular Spring constant Single layer 2D COFs COFs with hexagonal lattice type Models Single layer 2D COFs Synopsis 4. ENGINEERING THE ELECTRONIC PROPERTIES Computational details COFs with square lattice type Models Benchmarking of different methods π -conjugated COFs COFs with hexagonal topology Models π -conjugated COFs Synopsis PREDICTING THE ELECTRONIC BAND GAP Conceptualization Models Computational protocol 1D- and 2D-polymer Comparing the cores Predicting the gap Synopsis 6 SIMULATING THE PROTON TAUTOMERIZATION Models Collective variables (CVs) Computational protocol FES portraits and energy barriers Synopsis 7 CONCLUSIONS AND OUTLOOK APPENDIX A APPENDIX B APPENDIX C BIBLIOGRAPHY SCIENTIFIC OUTPUT ACKNOWLEDGEMENTS
22

Cohesive and Spectroscopic properties of the Lanthanides within the Hubbard I Approximation

Locht, Inka Laura Marie January 2015 (has links)
We describe the rare-earth elements using the Hubbard I approximation. We show that the theory reproduces the cohesive properties, like the volume and bulk modulus, and we find an excellent agreement between theory and experiment for the (inverse) photo emission spectra of the valence band. In addition we reproduce the spin and orbital moments of these elements. This licentiate thesis contains an introduction to the cohesive, magnetic and spectral properties of the rare-earth elements, to density functional theory and to density functional theory in combination with dynamical mean-field theory within the Hubbard I approximation. We also focus on some technical details, e.g. the optimal basis used in the electronic structure code and the role of charge self-consistency in properly describing the valence electrons.
23

Investigations of the atomic order and molar volume in the binary sigma phase by DFT and CALPHAD approaches / Etude de l'ordre atomique et du volume molaire dans la phase binaire sigma par approches DFT et CALPHAD

Liu, Wei 11 December 2017 (has links)
La phase sigma peut servir de prototype de phases topologiquement compactes, car la phase sigma possède une large gamme d'homogénéité et il existe de nombreuses données expérimentales disponibles pour la phase sigma. Dans le présent travail, les propriétés physiques, comprenant l'ordre atomique, le volume molaire, l'enthalpie de formation et le module d’élasticité isostatique, de la phase sigma binaire ont été étudiées en utilisant les calculs de premiers principes et la méthode CALPHAD combinée aux données expérimentales de la littérature.Tout d'abord, nous avons constaté que l'ordre atomique (c'est-à-dire la distribution du constituant atomique ou la préférence d'occupation du site sur les sites non équivalents d'une structure cristalline) de la phase sigma est affecté par le facteur de taille et la configuration électronique des éléments constitutifs. En outre, nous avons dissocié les effets de ces facteurs d'influence sur l'ordre atomique. Ensuite, nous avons mis en évidence un effet de l'ordre atomique sur l'enthalpie de formation, le module d’élasticité isostatique et le volume molaire. A l'état ordonné à 0K, la phase sigma a une faible enthalpie de formation et un grand module d’élasticité isostatique. L'influence de l'ordre atomique sur le volume molaire de la phase sigma dépend de la configuration électronique des deux éléments constitutifs. Par ailleurs, la base de données des volumes molaires des phases sigma binaires a été construite, ce qui devrait grandement faciliter la conception du matériau. Enfin, nous avons discuté de la prédiction de l'occupation du site de la phase sigma en utilisant la méthode CALPHAD combinée aux calculs de premiers principes. / The sigma phase can serve as a prototype of topologically close-packed (TCP) phases, as the sigma phase bears a broad homogeneity range and there are numerous experimental data available for the sigma phase. In the present work, physical properties, including atomic order, molar volume, enthalpy of formation and bulk modulus, of the binary sigma phase were investigated by using first principles calculations and CALPHAD method combining with the experimental data from the literature. Firstly, we found that the atomic order (i.e. atomic constituent distribution or site occupancy preference on nonequivalent sites of a crystal structure) of the sigma phase is affected by the size factor and electron configuration of the constituent elements. Furthermore, we have dissociated the effect of the individual influencing factor on atomic order. Secondly, the atomic order is found affecting physical properties, such as enthalpy of formation, bulk modulus and molar volume. When in the ordered state at 0K, the sigma phase shows a low enthalpy of formation and a large bulk modulus. The influence of atomic order on the molar volume of the sigma phase depends on the electron configuration of the two constituent elements. Thirdly, the molar volume database of the binary sigma phase has been built up within the CALPHAD framework, which can greatly facilitate material design. Finally, we tentatively discussed the site occupancy prediction of the sigma phase by using the CALPHAD method combined with first-principles calculations.
24

Numerical Modeling of Blast-Induced Liquefaction

Lee, Wayne Yeung 13 July 2006 (has links) (PDF)
A research study has been conducted to simulate liquefaction in saturated sandy soil induced by nearby controlled blasts. The purpose of the study is to help quantify soil characteristics under multiple and consecutive high-magnitude shock environments similar to those produced by large earthquakes. The simulation procedure involved the modeling of a three-dimensional half-space soil region with pre-defined, embedded, and strategically located explosive charges to be detonated at specific time intervals. LS-DYNA, a commercially available finite element hydrocode, was the solver used to simulate the event. A new geo-material model developed under the direction of the U.S. Federal Highway Administration was applied to evaluate the liquefaction potential of saturated sandy soil subjected to sequential blast environments. Additional procedural enhancements were integrated into the analysis process to represent volumetric effects of the saturated soil's transition from solid to liquid during the liquefaction process. Explosive charge detonation and pressure development characteristics were modeled using proven and accepted modeling techniques. As explosive charges were detonated in a pre-defined order, development of pore water pressure, volumetric (compressive) strains, shear strains, and particle accelerations were carefully computed and monitored using custom developed MathCad and C/C++ routines. Results of the study were compared against blast-test data gathered at the Fraser River Delta region of Vancouver, British Columbia in May of 2005 to validate and verify the modeling procedure's ability to simulate and predict blast-induced liquefaction events. Reasonable correlations between predicted and measured data were observed from the study.
25

Predicting Material Properties of Methane Hydrates with Cubic Crystal Structure Using Molecular Simulations

Lorenz, Tommy, Jäger, Andreas, Breitkopf, Cornelia 19 March 2024 (has links)
Formation of gas hydrates is an important feature of water systems. It occurs undesirably in natural gas pipelines, but also in deep-sea deposits and unfreezing permafrost. However, the natural occurrence is of particular interest because methane hydrates have one of the highest energy densities of all naturally occurring forms of methane. Therefore, an accurate description of its thermodynamic properties is required. In this work, we demonstrate how the material properties of methane hydrate can be more easily calculated compared to ab initio methods. Furthermore, it is shown how the material properties depend on the cage occupancy by using the comparably fast self-consistent-charge density-functional tight-binding (SCC-DFTB) method. The cell potential is calculated and compared to a numerical as well as an ab initio model, and is in good agreement with the literature.

Page generated in 0.0502 seconds