• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 11
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cascaded All-Optical Shared-Memory Architecture Packet Switches Using Channel Grouping Under Bursty Traffic

Shell, Michael David 01 December 2004 (has links)
This work develops an exact logical operation model to predict the performance of the all-optical shared-memory architecture (OSMA) class of packet switches and provides a means to obtain a reasonable approximation of OSMA switch performance within certain types of networks, including the Banyan family. All-optical packet switches have the potential to far exceed the bandwidth capability of their current electronic counterparts. However, all-optical switching technology is currently not mature. Consequently, all-optical switch fabrics and buffers are more constrained in size and can cost several orders of magnitude more than those of electronic switches. The use of shared-memory buffers and/or links with multiple parallel channels (channel grouping) have been suggested as ways to maximize switch performance with buffers of limited size. However, analysis of shared-memory switches is far more difficult than for other commonly used buffering strategies. Obtaining packet loss performance by simulation is often not a viable alternative to modeling if low loss rates or large networks are encountered. Published models of electronic shared-memory packet switches (ESMP) have primarily involved approximate models to allow analysis of switches with a large number of ports and/or buffer cells. Because most ESMP models become inaccurate for small switches, and OSMA switches, unlike ESMP switches, do not buffer packets unless contention occurs, existing ESMP models cannot be applied to OSMA switches. Previous models of OSMA switches were confined to isolated (non-networked), symmetric OSMA switches using channel grouping under random traffic. This work is far more general in that it also encompasses OSMA switches that (1) are subjected to bursty traffic and/or with input links that have arbitrary occupancy probability distributions, (2) are interconnected to form a network and (3) are asymmetric.
12

Performance modeling of congestion control and resource allocation under heterogeneous network traffic. Modeling and analysis of active queue management mechanism in the presence of poisson and bursty traffic arrival processes.

Wang, Lan January 2010 (has links)
Along with playing an ever-increasing role in the integration of other communication networks and expanding in application diversities, the current Internet suffers from serious overuse and congestion bottlenecks. Efficient congestion control is fundamental to ensure the Internet reliability, satisfy the specified Quality-of-Service (QoS) constraints and achieve desirable performance in response to varying application scenarios. Active Queue Management (AQM) is a promising scheme to support end-to-end Transmission Control Protocol (TCP) congestion control because it enables the sender to react appropriately to the real network situation. Analytical performance models are powerful tools which can be adopted to investigate optimal setting of AQM parameters. Among the existing research efforts in this field, however, there is a current lack of analytical models that can be viewed as a cost-effective performance evaluation tool for AQM in the presence of heterogeneous traffic, generated by various network applications. This thesis aims to provide a generic and extensible analytical framework for analyzing AQM congestion control for various traffic types, such as non-bursty Poisson and bursty Markov-Modulated Poisson Process (MMPP) traffic. Specifically, the Markov analytical models are developed for AQM congestion control scheme coupled with queue thresholds and then are adopted to derive expressions for important QoS metrics. The main contributions of this thesis are listed as follows: iii ¿ Study the queueing systems for modeling AQM scheme subject to single-class and multiple-classes Poisson traffic, respectively. Analyze the effects of the varying threshold, mean traffic arrival rate, service rate and buffer capacity on the key performance metrics. ¿ Propose an analytical model for AQM scheme with single class bursty traffic and investigate how burstiness and correlations affect the performance metrics. The analytical results reveal that high burstiness and correlation can result in significant degradation of AQM performance, such as increased queueing delay and packet loss probability, and reduced throughput and utlization. ¿ Develop an analytical model for a single server queueing system with AQM in the presence of heterogeneous traffic and evaluate the aggregate and marginal performance subject to different threshold values, burstiness degree and correlation. ¿ Conduct stochastic analysis of a single-server system with single-queue and multiple-queues, respectively, for AQM scheme in the presence of multiple priority traffic classes scheduled by the Priority Resume (PR) policy. ¿ Carry out the performance comparison of AQM with PR and First-In First-Out (FIFO) scheme and compare the performance of AQM with single PR priority queue and multiple priority queues, respectively.
13

以任務分配解決即時金融服務中突發流量及網路不穩定問題 / Task Assignment for Real-time Financial Service System under Bursty Traffic and Unstable Networks

陳泰銘, Chen, Tai Ming Unknown Date (has links)
最近,金融科技(FinTech)和行動金融服務,吸引越來越多的目光。新的創新金融科技服務,改變了金融服務的消費行為。行動網路的發展使人們能夠隨時隨地的享受行動銀行的服務已經是個不爭的事實。然而,由於無線網路先天的特性以及行動裝置的移動性,使行動金融的服務品質受到網路不穩定的影響。而且,隨著Bank 3.0時代的來臨,將會有大量的使用者同時使用行動金融服務,特別是在股市開盤以及重大訊息揭露的時候。因著大量使用者瞬間湧入,以及無線網路不穩定的影響,交易系統的效能很可能會時好時壞,所以無法滿足即時金融市場的需求。 本論文中,我們提出「行動銀行訊息即服務」的框架,使系統能夠很容易的水平擴充,並且能夠輕易的實現雙向通訊和雙向交易等多項行動金融服務。為了達到最少成本追求最大利益的目的,我們發展了能夠適應突發流量以及網路不穩定性的任務分配演算法,使得不用增加額外硬體成本的前提下改善系統效能。然後,為了實驗欲模擬大量行動裝置的使用者,我們觀察真實網路的特性並發明了網路延遲自相關模型來驗證我們提出的任務分配演算法。結果顯示,透過此任務分配演算法,確實能夠有效改善系統資源管理的能力。最後,本研究將系統佈署於真實網路環境當中,並且發現進行同樣實驗的結果與採用網路延遲自相關模型的實驗結果一致。因此,本研究間接驗證了網路自相關模型的正確性,以及證明本任務分配演算法,在突發流量和網路不穩定的即時行動金融服務環境下,能有效降低系統響應時間。 / FinTech (financial technology) and mobile financial services are getting more and more attention recently. New innovative FinTech services change the consumption behavior for financial services. It is an indisputable fact development of the mobile Internet allows people to enjoy mobile banking everywhere and anytime. However, due to the nature of wireless networking and the mobility of the mobile device, the quality of mobile financial service will be affected by network instability. Moreover, with the coming of Bank 3.0, a huge amount of users would be in the mobile service of finance simultaneously, especially when the instances of the stock market opening or disclosure of highly important financial message. As the result of bursty traffic and network instability, the performance of transaction system is up and down, making it tough to satisfy the demand of real-time financial markets. In this thesis, we propose a “Mobile Banking Messaging as a Service Framework” that can easily scale out and fulfill functions comprising Bilateral Communication, Bilateral Trading, and many other mobile financial services. To pursuit of the greatest benefit along with investment of the least resources, we develop the task assignment algorithm which can adapt the system to bursty traffic and unstable networks to improve performance for free. Then, in order to simulate a large number of mobile users, we observe the characteristic of real-world network delay and propose a network delay autocorrelation model to verify our task assignment algorithm. The results of experiment show that we could actually use our task assignment algorithm to improve the ability of the system to manage resource. Finally, we deploy our system in a real-world network delay environment and find that the results obtained in the real condition are the same with our simulation results. Therefore, this research can indirectly verify the correctness of the network delay autocorrelation model, and prove that our task assignment algorithm can effectively reduce the system response time for real-time mobile financial service system under bursty traffic and unstable networks.

Page generated in 0.0364 seconds