• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analýza způsobů modelování procesu svařování metodou konečných prvků / Analysis of methods of modeling welding process by finite element method

Krakovský, Andrej January 2019 (has links)
Presented master thesis deals with computational modelling (simulation) of welding process. Its main goal is to determine the residual stresses and deformations arising after welding. SYSWELD and ANSYS are used for simulation, both based on the finite element method. Specifically, the processes of welding fillet and butt welds are solved. Results from both software are compared with each other and verified by experimental results.
2

Residual stress development in AA7050 stationary shoulder friction stir welds

Sun, Tianzhu January 2018 (has links)
Stationary shoulder friction stir welding (SSFSW) is a recently developed variant of conventional friction stir welding (FSW). Recent studies have shown that SSFSW can join high strength aluminum alloys with improved mechanical strength and reduced distortion as a result of a narrower and more uniform thermal profile. However, a lack of understanding on the residual stress development in the SSFSW process makes it difficult to assess the structural integrity and delays a widespread application of this technique to industry. This dissertation reports the first systematic investigation into the development of residual stress induced by the SSFSW process and comparison between SSFSW and FSW techniques. Welding residual stresses were experimentally assessed with both the contour method and neutron diffraction. The weld microstructure and hardness distributions were characterized and used to understand the formation of residual stresses during the welding process. The results have shown that for both FSW and SSFSW processes, the residual stresses distribute in the form of ‘M’ shaped profile while the magnitude and size of tensile residual stress zone were effectively reduced (by 25%) in the SSFSW process, even when input welding power was identical. Other improvements seen in the SSFSW process include a reduction in the heat affected zone width, an increase in the minimum hardness and a more uniform through-thickness microstructure and hardness. The dominating welding process parameter affecting the welding residual stress was travel speed as compared to rotation speed and tool downforce. With a 90 degree shaped shoulder, SSFSW has been shown to produce defect-free T-sections by dual fillet welds. For these components, an asymmetrical distribution of microstructure, hardness and residual stresses were found as a consequence of the thermal effects induced by second weld on the first weld. The material softening caused by the first weld provides the potential of utilizing a lower heat input on the subsequent pass so as to optimize the welding parameters.
3

Numerical simulation of residual stresses in a weld seam : An application of the Finite Element Method

Maczugowski, Maciej January 2017 (has links)
Articulated haulers are fundamental equipment to transport material. The load carrying structure on a hauler consists mainly of welded frames. During welding of the frames high residual stress will be introduced. These stresses may have a significant impact on the fatigue life of the frames. This is the reason for having good knowledge of the weld residual stresses. The finite element method was used to calculate the residual stress distributions in a butt weld and a T-join weld. Simulation of the welding process with thermal and mechanical analysis was prepared by means of welding GUI implemented in LS-PrePost. The welding simulation is a computer intensive operation with high CPU time. That is why it is important to investigate which process factors that have the largest impact on welding simulation results. The aim of this thesis is to investigate the correlation between designed models in FEA software with published results of weld residual stress measurements and conclude which parameters should be mainly taken into consideration.
4

Analýza svarových spojů z termoplastů / Analysis of Thermoplastic Welded Joints

Procházka, Martin January 2018 (has links)
This thesis deals with analyses of thermoplastic welded joints. Experiments were performed, in which the not-welded specimens and specimens with cruciform welded joints were tested by tensile and three-point bending test. For these measurements, polypropylene and polyethylene specimens were used. Afterwards, the analyses of specimen models were made in the ANSYS programme. The results of the analyses were compared with figures of the analytic calculations and measurements.
5

Beräkningsmetoder för verifiering av svetsar med inriktning på PWT / Calculation methods for welding verification with focus on PWT

Petersson, Viktor, Gustafsson, Johan January 2019 (has links)
Stål är ett material som används i olika byggnadskonstruktioner. I de byggnadskonstruktioner som utsätts för upprepade belastningar kan utmattning ske i materialet. Utmattning leder till permanenta skador i form av sprickbildning och slutligen brott. I svetsade konstruktioner är det ofta svetsar som har den lägsta utmattningsstyrkan. För att förbättra en svets utmattningsstyrka finns efterbehandlingsmetoder som benämns Post Weld Treatment (PWT). Idag används den beräkningsmetod som är föreskriven i Eurokod vid verifiering av svetsar. Beräkningsmetoden är förenklad och kan underskatta objektets livslängd med hänsyn till utmattning. Syftet med arbetet är att studera olika dimensioneringsmetoder som behandlar utmattningsbelastade svetsar samt hur tillämpning av PWT kan förbättra en typsvets livslängd. Målet med arbetet är att studera en typsvets och visa skillnaden i antalet lastcykler mellan beräkningsmetoderna samt hur många lastcykler samma typsvets förväntas öka med PWT. Teorin och resultaten utgår från vetenskapliga artiklar, litteraturstudier och enfallstudie som behandlar både en genomsvetsad stumsvets samt en kälsvets lokaliserade på en I-balk. Resultatet pekar mot att den metod som används idag underskattar livslängden och att PWT kan markant kan förbättra en svetsutmattningsstyrka. / Steel is a material used in various building structures. Fatigue can occur in the material if building structures is exposed for repeated loads. Fatigue leads to permanent damages such as crack initiations and fracture. It is common that welds in welded structures have the lowest fatigue strength. A welds fatigue strength can be improved with treatments termed Post Weld Treatment (PWT). Today a welds fatigue strength is verified with a method described in Eurocode. The calculation method is simplified which can underestimate the objects number of lifecycles regarding fatigue. The purpose with this essay is to study different structural design methods for fatigue exposed welds and how many lifecycles a typeweld will increase when applying PWT. The goal with this essay is to study a typeweld and calculate the number of lifecycles between the calculation methods and to show how many lifecycles the same type weld will increase when applying PWT. The results and theory are based on scientific articles, literature studies and a casestudy which both contains a through welded butt weld and a fillet weld placed on an I-beam. The results points at that the calculation method that is used today underestimates the number of lifecycles and that the number of lifecycles increased significant after PWT.
6

Prediction and experimental validation of weld dimensions in thin plates using superimposed laser sources technique

Wu, Tsun-Yen 20 May 2011 (has links)
The objective of this research is to develop a method to evaluate important weld dimensions in thin plates by using laser generated ultrasounds and EMAT receiver. The superimposed laser sources (SLS) technique is developed to generate narrowband Lamb waves with fixed wavelengths in thin plates. The method permits the flexibility of selecting desired wavelength. The signal processing procedure that combines wavenumber-frequency (k-w) domain filtering and synthetic phase tuning (SPT) is used to further reduce the complexity of Lamb waves. The k-w domain filtering technique helps to filter out the unwanted wave components traveling at the direction that is not of interest to us and the SPT technique is applied to amplify and isolate a particular Lamb wave mode. The signal processing procedure facilitates the calculation of reflection coefficients of Lamb waves that result from the presence of weld joints. The SLS and signal processing procedure are then applied to measure reflection coefficients in butt welds and lap welds. Two methods, the direct method and indirect method, are used to develop models that use reflection coefficients as predictors to predict these weld dimensions. The models developed in this research are shown to accurately predict weld dimensions in thin plates.

Page generated in 0.0321 seconds