• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-objective optimization of Industrial robots

Nezhadali, Vaheed January 2011 (has links)
Industrial robots are the most widely manufactured and utilized type of robots in industries. Improving the design process of industrial robots would lead to further developments in robotics industries. Consequently, other dependant industries would be benefited. Therefore, there is an effort to make the design process more and more efficient and reliable. The design of industrial robots requires studies in various fields. Engineering softwares are the tools which facilitate and accelerate the robot design processes such as dynamic simulation, structural analysis, optimization, control and so forth. Therefore, designing a framework to automate the robot design process such that different tools interact automatically would be beneficial. In this thesis, the goal is to investigate the feasibility of integrating tools from different domains such as geometry modeling, dynamic simulation, finite element analysis and optimization in order to obtain an industrial robot design and optimization framework. Meanwhile, Meta modeling is used to replace the time consuming design steps. In the optimization step, various optimization algorithms are compared based on their performance and the best suited algorithm is selected. As a result, it is shown that the objectives are achievable in a sense that finite element analysis can be efficiently integrated with the other tools and the results can be optimized during the design process. A holistic framework which can be used for design of robots with several degrees of freedom is introduced at the end.
2

Deployable Tessellated Doubly-Curved Surfaces with Panel Thickness Accommodation

Michael, Nicholas A. January 2020 (has links)
No description available.
3

Modeling the Mechanical Morphospace of Neotropical Leaf-nosed Bat Skull: A 3d Parametric Cad and Fe Study

Samavedam, Krishna C 01 January 2011 (has links) (PDF)
In order to understand the relationship between feeding behavior and the evolution of mammalian skull form, it is essential to evaluate the impact of bite force over large regions of skull. There are about 1,100 bat species worldwide, which represent about 20% of all classified mammal species. Hence, a study in the evolution of bat skull form may provide general understanding of the overall evolution of skull form in mammals. These biomechanical studies are generally performed by first building solid Finite Element (FE) models of skull from micro CT scans. This process of building FE models from micro CT scans is both tedious and time consuming. Therefore a new approach is developed in this research project to build these FE models quickly and efficiently. I have used SolidWorks to build a parameterized, three dimensional surface CAD model of a skull of the short-tailed fruit bat, Carollia perspicillata, by using coordinate data from an STL model of the species. The overall shape of this model closely resembled that of solid model of C. perspiciallata constructed from micro CT scans. Finite element analyses of the solid and surface models yielded comparable results in terms of magnitude and distribution of von Mises stress and mechanical advantage. Using this parametric surface model, the FE plate or shell element models of different bat species were generated by varying two parameters, palate length and palate width. Parametric analyses were performed on these FE plate models of skulls and response surfaces of performance criteria: von Mises stress, strain energy and mechanical advantage were generated by varying the input parameters. After generating response surfaces, species of bats from the morphologically diverse family of New World leaf-nosed bats (Family Phyllostomidae) were overlain on these response surfaces to determine which portions of the performance design space (palate length X width) are and are not occupied. These plots serve as a foundation for understanding the affect of different performance criteria on the evolution of bat skull form.
4

Computational Fluid Dynamics Analysis of the Combustion Process for the TJT3000 Micro Jet Turbine Engine

Harden, Marcus A., II 27 December 2021 (has links)
No description available.
5

Design and Packaging of All-in-One Axle / Design och förpackning av allt-i-ett axeln

Talib, Alafiya, Singhal, Lakshay January 2023 (has links)
The aim of this thesis work is to design an electric axle that contains all the operational components, like the powertrain, suspension, brakes, and steering system. One of the requirements of this design work is to package all the axle components compactly in one single unit. This work is also carried out to assess the viability of assisting in the overall modularity of the chassis as modularity in commercial vehicles has become a popular trend in recent years due to the increasing market competition as well as the need for more sustainable products. The work has been carried out in three phases - research, conceptualization, and analysis. The research phase consisted of both market research on the existing products available commercially and a literature review of the various components of an axle to find feasible alternatives to the components currently being used in electric axles. In the conceptualization phase, the various e-axle concepts were compared using methods like PUGH’s matrix to eliminate concepts that did not seem feasible for the detailed design. Preliminary CAD models were designed for the One-motor solution and the In-wheel motor solution. The In-wheel motor solution was eliminated due to some critical limitations and the One-motor solution was chosen for the next sub-phase of detailed CAD modeling. This concept was then analysed using Finite Element analysis as well as kinematic analysis to get insights into the axle performance as well as to observe the load distribution on the axle during operation. / Målet med detta examensarbete är att designa en elektrisk axel som innehåller alla driftskomponenter, såsom kraftöverföring, fjädring, bromsar och styrning. Ett av kraven för denna design är att kompakt packa alla axelkomponenter i en enda enhet. Arbetet utförs också för att bedöma genomförbarheten av att bidra till den övergripande modulariteten hos chassit, eftersom modularitet inom kommersiella fordon har blivit en populär trend de senaste åren på grund av ökad marknadskonkurrens samt behovet av mer hållbara produkter. Arbetet har genomförts i tre faser - forskning, konceptualisering och analys. Forskningsfasen bestod av både marknadsundersökningar av befintliga produkter som finns kommersiellt tillgängliga och en litteraturgenomgång av olika delkomponenter i en axel för att hitta genomförbara alternativ till de komponenter som för närvarande används i elektriska axlar. I konceptualiseringsfasen jämfördes olika e-axelkoncept med hjälp av metoder som PUGH-matrisen för att eliminera koncept som inte verkade genomförbara för den detaljerade designen. Preliminära CAD-modeller designades för enmotorslösningen och in-wheel- motorlösningen. In-wheel-motorlösningen eliminerades på grund av vissa begränsningar, och enmotorslösningen valdes för nästa underfas av detaljerad CAD-modellering. Detta koncept analyserades sedan med hjälp av elementanalys samt kinematisk analys för att få insikter i axelns prestanda och observera belastningsfördelningen på axeln under drift.
6

Deformační a napěťová analýza dolní čelisti s fixátorem / Stress-Strain Analysis of Mandible with Fixator

Semerák, Jaroslav January 2018 (has links)
This diploma thesis deals with fixation of the lower jaw fractures using commercially produced fixators. The topic was researched on the basis of the available literature. The thesis also indicates basic anatomy of the surveyed area and nowadays the most commonly used materials. Subsequently, the stress-strain analysis of the lower jaw with the applied angular stable fixation plate was performed. The solution was performed for the lower jaw with a fracture in the area of the condyle with different types of fixation plates made of CP-Ti Grade 4. In addition, the strain analysis of the healed lower jaw with the fixators after the defect in the area of chin and angle was performed. The mechanical interaction analysis of the lower jaw with defect and applied fixation plate was solved by using computational modeling with variational approach, in use of the finite element method in Ansys Workbench 18.1. The thesis also describes in detail the creation of a computational model of the system and the subsequent solution.
7

Deformační a napěťová analýza dolní čelisti s aplikovaným fixátorem v důsledku deficitu kostní tkáně / Stress-strain analysis of mandible with applied fixator due to the missing bone tissue

Fňukal, Jan January 2017 (has links)
This thesis deals with the fixation of lower jaw with bone tissue defect using commercially produced fixator. Large defects of bone tissue are mainly caused due to the removal of bone tissue affected by tumor. These topics have been researched on the basis of the literature. Subsequently, stress strain analysis of the lower jaw with the applied fixation plate was performed. This analysis was solved by using computational modeling with variational approach, ie the finite element method. The work also describes in detail the procedure of creating model of geometry, model of material, model of boundary conditions and loads with subsequent solution of several computational models. The stress strain analysis was done for lower jaw with varying size of the removed bone tissue with applied reconstruction plate made of CP-Ti Grade 4 and for the lower jaw with the plate, which is made of -Ti-Mo. Finally, the influence of the mechanical properties of the callus during formation of new bone tissue (callus healing) on the stress and deformation of the solved system was evaluated.
8

Design and Development of an Intra-Ventricular Assistive Device For End Stage Congestive Heart Failure Patients: Conceptual Design

Hosseinipour, Milad 27 November 2013 (has links)
No description available.

Page generated in 0.0528 seconds