• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Funkční testování sběrnice CAN Flexible Data-Rate

Macek, Mojmír January 2019 (has links)
The topic of this thesis is the transfer of information in vehicles using bus systems. The theoretical part is devoted to the description of communication as a means of passing information and to the mode of communication between individual technical systems via communication networks. Furthermore, it summarizes the specifics of selected communication systems. The practical part of the thesis includes an experiment for which the building of a CAN FD bus model was required. For communication purposes, the programming of SPI protocol on the Field Programmable Gate Array (FPGA) was crucial to provide access to the CAN FD controller. The result is a bus receiving and transmitting test and a timing test for reading and writing data.
2

Evaluační platforma pro CAN Flexible Data Rate transceivery / CAN Flexible Data Rate transceiver evaluation platform

Hus, Peter January 2019 (has links)
The aim of the work is to develop an evaluation platform for comunnication on CAN FD bus. This evaluation platform is mainly intended to be used for the application support of the NCV7344 CAN transceiver on given module. The main part of the work is to develop firmware for SAM V71 microcontroller and a control application software for computer. This control application will serve to setup the communication parameters, send and receive data and control communication in the testing network. Attention is also paid to develop and test effectiveness of signal improvement circuits and their impact on bit error rate in real conditions on designed evaluation network.
3

Sistemas de comunicação CAN FD: modelamento por software e análise temporal. / CAN FD communication systems: modeling software and temporal analysis.

Andrade, Ricardo de 26 September 2014 (has links)
O CAN (Controller Area Network) é um padrão no barramento de comunicação, amplamente difundido em aplicações industriais, particularmente em sistemas automotivos. Atualmente, um dos principais problemas no ramo automotivo é que esse barramento está com muitas mensagens no barramento, resultado da incorporação incremental de sistemas eletrônicos em automóveis, visto que há uma exigência maior de conectividade devido às exigências da sociedade e mercado. Como alternativa, vem sendo desenvolvida uma nova rede de comunicação, conhecida como CAN with Flexible Data-Rate (CAN-FD), que é um barramento com velocidade de transmissão de informação mais alta e maior capacidade de transporte de dados. Este projeto tem por objetivo principal explorar as funcionalidades da rede CAN-FD, através de simulações do trânsito de mensagens numa rede CAN-FD usando os dados de uma rede real CAN, e verificando a previsibilidade de ambas no âmbito de um protocolo que possa atender à demanda de sistemas complexos. A comparação é executada a partir de um conjunto de mensagens adicionadas na rede, para verificar os limites de transmissão de cada uma das redes, e os respectivos tempos de atraso das mensagens. Como um segundo estudo de caso, uma rede de controle em malha fechada foi desenvolvida, conectada a um barramento CAN e um barramento CAN-FD. Essa técnica de controle permitiu eliminar os ruídos que interferem no controle, e checar o limite em que o protocolo de comunicação consegue manter em uma malha de controle funcionando. Os resultados mostraram que é possível transmitir uma imensa quantidade de dados com o menor uso do busload (quantidade de mensagens transmitidas) no veículo através do uso do barramento CAN-FD, porém ainda não foi lançado no mercado um controlador do CAN-FD para realizar essa tarefa. Por outro lado, os dois protocolos, CAN-FD e CAN, tem suas previsibilidades comprometidas pois não conseguem enviar a mensagem quando o barramento está superior a 98,86% de carga. / The CAN (Controller Area Network) is a standard in the communication bus, widespread in industrial applications, particularly in automotive systems. Currently, one of the main problems in the automotive industry is that this bus is with many messages on the bus, the result of incremental incorporation of electronic systems in automobiles, since there is a greater demand for connectivity due to the demands of society and the market. Alternatively, it has been developed a new communications network, known as CAN with Flexible Data-Rate (CAN-FD), which is a bus with transmission speeds higher and higher capacity data transport information. This project\'s main objective is to explore the features of the network CAN-FD, through simulations of the traffic of messages on a CAN network FD using data from a real CAN network, and verifying the predictability both in the context of a protocol that can meet the demand complex systems. The comparison is performed from a set of messages added to the network to verify the boundaries of each of the transmission networks and the respective delay times of the messages. As a second case study, a network of closed-loop control was developed, connected to a CAN bus and CAN bus FD. This control technique has eliminated the noises that interfere with the control and check the extent that the communication protocol can keep a control loop running. The results showed that it is possible to transmit a huge amount of data with the lowest usage busload (amount of transmitted messages) to the vehicle through the use of CAN bus FD, but not yet released to market a CAN controller FD to accomplish this task . Moreover, both protocols, CAN-FD and CAN has its predictability compromised because they are unable to send the message when the bus is more than 98.86% load.
4

Sistemas de comunicação CAN FD: modelamento por software e análise temporal. / CAN FD communication systems: modeling software and temporal analysis.

Ricardo de Andrade 26 September 2014 (has links)
O CAN (Controller Area Network) é um padrão no barramento de comunicação, amplamente difundido em aplicações industriais, particularmente em sistemas automotivos. Atualmente, um dos principais problemas no ramo automotivo é que esse barramento está com muitas mensagens no barramento, resultado da incorporação incremental de sistemas eletrônicos em automóveis, visto que há uma exigência maior de conectividade devido às exigências da sociedade e mercado. Como alternativa, vem sendo desenvolvida uma nova rede de comunicação, conhecida como CAN with Flexible Data-Rate (CAN-FD), que é um barramento com velocidade de transmissão de informação mais alta e maior capacidade de transporte de dados. Este projeto tem por objetivo principal explorar as funcionalidades da rede CAN-FD, através de simulações do trânsito de mensagens numa rede CAN-FD usando os dados de uma rede real CAN, e verificando a previsibilidade de ambas no âmbito de um protocolo que possa atender à demanda de sistemas complexos. A comparação é executada a partir de um conjunto de mensagens adicionadas na rede, para verificar os limites de transmissão de cada uma das redes, e os respectivos tempos de atraso das mensagens. Como um segundo estudo de caso, uma rede de controle em malha fechada foi desenvolvida, conectada a um barramento CAN e um barramento CAN-FD. Essa técnica de controle permitiu eliminar os ruídos que interferem no controle, e checar o limite em que o protocolo de comunicação consegue manter em uma malha de controle funcionando. Os resultados mostraram que é possível transmitir uma imensa quantidade de dados com o menor uso do busload (quantidade de mensagens transmitidas) no veículo através do uso do barramento CAN-FD, porém ainda não foi lançado no mercado um controlador do CAN-FD para realizar essa tarefa. Por outro lado, os dois protocolos, CAN-FD e CAN, tem suas previsibilidades comprometidas pois não conseguem enviar a mensagem quando o barramento está superior a 98,86% de carga. / The CAN (Controller Area Network) is a standard in the communication bus, widespread in industrial applications, particularly in automotive systems. Currently, one of the main problems in the automotive industry is that this bus is with many messages on the bus, the result of incremental incorporation of electronic systems in automobiles, since there is a greater demand for connectivity due to the demands of society and the market. Alternatively, it has been developed a new communications network, known as CAN with Flexible Data-Rate (CAN-FD), which is a bus with transmission speeds higher and higher capacity data transport information. This project\'s main objective is to explore the features of the network CAN-FD, through simulations of the traffic of messages on a CAN network FD using data from a real CAN network, and verifying the predictability both in the context of a protocol that can meet the demand complex systems. The comparison is performed from a set of messages added to the network to verify the boundaries of each of the transmission networks and the respective delay times of the messages. As a second case study, a network of closed-loop control was developed, connected to a CAN bus and CAN bus FD. This control technique has eliminated the noises that interfere with the control and check the extent that the communication protocol can keep a control loop running. The results showed that it is possible to transmit a huge amount of data with the lowest usage busload (amount of transmitted messages) to the vehicle through the use of CAN bus FD, but not yet released to market a CAN controller FD to accomplish this task . Moreover, both protocols, CAN-FD and CAN has its predictability compromised because they are unable to send the message when the bus is more than 98.86% load.
5

Data Logging for Controller Area Network of Autonomous Vehicles : An Investigation of a CAN-Ethernet Gateway / Dataloggning av Controller Area Network för Autonoma Fordon : En undersökning av en nätsluss för CAN-Ethernet

Grönås, Daniel, Mazur, Fredrik January 2022 (has links)
With the development of autonomous vehicles, more and more technology is introduced into the automotive industry. Ethernet has found its way into the vehicle network, and it is forced to coexist with the well-established CAN bus. In terms of data acquisition, the presence of a mixed network brings challenges with significant changes in network architecture. This thesis explores CAN-Ethernet gateways as a replacement for the PCIe bus CAN transceivers utilized in today's logging systems, with the purpose to improve the adaptability of the autonomous logging system. A CAN-Ethernet gateway was implemented using Kvaser's DIN Rail SE400S-X10in an experimental comparison against the PCIe logging solution, including both classical CAN and CAN FD communication. In addition, a case study on the benefits and drawbacks with implementing an Ethernet architecture was performed, utilizing semi-structured interviews. It was concluded that a CAN-Ethernet gateway provides a robust solution in relation to data loss. Throughout the tests, the message loss rate was 0% for both logging solutions. However, CAN-Ethernetlogging introduced additional delay into the system. For the tests on a truck simulation rig the mean additional delay from a CAN-Ethernet gateway, compared to the existing PCIe-CAN logging, was 2 ms. Moreover, some spikes occurred and in a number of cases it could be up to 6 ms in additional delay compared to the existing PCIe logging. It was also proven difficult to time synchronize the gateway with the autonomous logging system, and unknown delays had an impact. Relevant metrics were obtained from relative measurements of side-by-side logging between the PCIe and CAN-Ethernet communication. The standard deviation and fluctuation of the delay were relevant metrics, since smaller fluctuations made the delay more predictable and real-time compatible. A CAN-Ethernet deployment may create a more complex architecture in general, and as of now has limitations for real-time systems. On the other hand, it may offer significant possibilities in future development of a more adaptable and scalable logging system. / Med utvecklingen av autonoma fordon har mer och mer teknologi introducerats inom fordonsindustrin. Ethernet har funnit sin väg in i fordonsnätverket och tvingas existera sida vid sida med den väletablerade CAN-bussen. För dataloggning orsakar närvaron av ett blandat nätverk (med både CAN och Ethernet) utmaningar i samband med stora förändringar inom nätverksarkitektur. Det här examensarbetet utforskar nätslussar för CAN-Ethernet som en ersättare till PCIe-bussens CAN-sändtagare som används i dagens loggningssystem. En CAN-Ethernet-nätsluss implementerades genom att använda Kvasers DIN Rail SE400S-X10 i en experimentell jämförelse med PCIe-loggningssystemet, och inkluderade både klassisk CAN samt CAN FD kommunikation. I tillägg gjordes en fallstudie om fördelar och nackdelar med att implementera en Ethernet-arkitektur,vilken grundades på semi-strukturerade intervjuer. Slutsatsen var att CAN-Ethernet-nätslussar tillhandahåller en robust lösning i förhållande till dataförlust. Under alla testerna var meddelandeförlusten 0% hos båda loggningsmetoderna. Däremot introducerade CAN-Ethernet-loggning en ökad fördröjning till systemet. För testerna på lastbilsriggsimulatorn var fördröjningen 2 ms jämfört med PCIe-CAN-loggningen. Dessutom förekom spikar i fördröjningen och i vissa fall resulterade fördröjningen i upp mot 6 ms, jämfört mot den befintliga PCIe-loggningen. Det visade sig även vara svårt att tidssynkronisera nätslussen med det autonoma loggningssystemet och okända fördröjningar hade en inverkan. Relevanta mått erhölls från relativa mätningar av jämsides loggning mellan PCIe och CAN-Ethernet kommunikation. Standardavvikelsen och fluktuation av fördröjningen var relevanta mått eftersom mindre fluktuationer resulterade i en mer förutsägbar samt realtidskompatibel fördröjning. Användningen av CAN-Ethernet kan, i allmänhet, resultera i en mer avancerad arkitektur och har i dagsläget begränsningar inom realtidssystem. Å andra sidan kan CAN-Ethernet erbjuda markanta möjligheter inom framtida utveckling av ett mer modulärt och skalbart loggningssystem.
6

A Methodology for Transitioning Maritime Hardwired Communication to Controller Area Network

Lavén, Astrid January 2024 (has links)
A ship’s communication system serves as a vital infrastructure to host real-time applications,facilitating the transmission of crucial data, including sensor readings and control commands. Theexpansive dimensions of a ship necessitate a complex network of cables in an analogue hardwiredsetup, stretching from the bridge to the machinery. However, this reliance on multiple cables introduces logistical challenges and vulnerabilities within the system architecture. This thesis establishesa systematic approach for transitioning ship control systems from traditional analogue hardwiredconfigurations to more efficient Controller Area Network (CAN) bus-based systems. CAN is amulti-master communication protocol that enables multiple controllers to communicate with eachother without a host computer, making it particularly suitable for complex environments. While alternative networking options such as Ethernet or wireless networks are available, CAN emerges as acost-effective and robust communication solution suited for maritime environments. The transitionto CAN-based systems not only prolongs the ship’s operational lifespan but can also enhance fuelefficiency and reduce environmental impact. Ensuring a seamless transition requires careful consideration of safety and functionality equivalent to legacy systems. Extensive research into suitablecommunication buses, CAN protocols, and scheduling algorithms is essential. By exploring Controller Area Network with Flexible Data-Rate (CAN FD) as a complement to CAN 2.0, the tool offersmultiple solutions, with the optimal choice contingent upon various parameters. A comprehensive tool has been developed to facilitate the safe migration from hardwired systems to CAN-basedsolutions. This tool enables the mapping of signals to messages, priority assignment using various algorithms, including Audsley’s optimal priority assignment algorithm, and real-time analysis.This work will assist in the transition by presenting diverse solutions, clearly outlining deadlines,identifying potential misses, and recommending the most effective combination of methods.
7

Hardware-supported test environment analysis for CAN message communication

Akaslan, Seyhmus 08 July 2024 (has links)
Recent innovations in technology and demands for more functionality increased software size in cars up to 100 million lines of code. Explosion in software size is accompanied by an increased number of ECUs. Testing of software became more complex than ever. To be able to test the exact timing behavior of a software, it needs to be put on actual hardware. HIL test benches have become an indispensable part of ECU testing. The hard part of ECU testing is their dependency on each other. ECUs communicate to each other by passing information in the form of CAN messages. This makes testing a single ECU alone without its environment impossible. Because of their dependencies on each other they need to be integrated first to be tested. Before HIL benches those tests were done either on vehicles or in integration labs where ECUs are connected to each other in a lab environment. Advances in software science brought up an invention known as rest-bus simulation. In some sources it is also known as residual bus or rest of the bus simulation. HIL platforms simulate missing nodes and messages as if the actual hardware is there. HIL platforms blend the real world and simulated ones in real time. Device under test thinks it is present in a vehicle. Established HIL platforms solved many problems that existed in software projects. However, because of their cost, only a small number of such platforms are affordable within a company. Developers need to wait in long queues to test their ECUs. These waiting times can be even longer in agile software development methodologies due to their frequent testing needs. It is believed that front-loading tests before the HIL is the solution to this problem. The aim of this thesis is to investigate alternative small form factor HIL platforms which could be placed on every developer’s desk. To place the proposed solution at every desk, the solution must be affordable and portable. The solution will hopefully reduce queues accumulating behind established HIL platforms and shorten testing times. For this end, state-of-the-art HIL solutions will be investigated. Afterwards, a working proof-of-concept will be demonstrated in the form of residual bus simulation and gateway application. Portability of the solution is a must for the gateway application. Test engineers use gateway applications to alter some signal values either on HIL or on-vehicle. Only small and easy to carry solutions are feasible for on-vehicle testing. It will be shown that the proposed solution will reduce the testing time and testing cost. In addition to them, an increase in parallelism, testing frequency, and software quality will be observed by bringing testing equipment to every developer’s desk.

Page generated in 0.0303 seconds