• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemical Mechanism of the Catalytic Subunit of Camp-Dependent Protein Kinase: Methods for Determining the Primary ¹⁸O Isotope Effects Using the Remote Label Technique

Chen, Gang, 1963- 12 1900 (has links)
A description of the nature of the transition state structure for phosphoryl transfer in the cAPK reaction requires a measurement of the primary 180 isotope effect at the serine hydroxyl acceptor. Since it is difficult to obtain primary 180 isotope effect directly, the 15N/1 4N ratio of the a-amine of the C-terminal glycine in the peptide Leu Arg-Lys-Ala-Ser-Leu-Gly (when serine is phosphorylated) was used to represent on the phosphorylation at serine. 15N Glycine, ' 4N-Glycine and 180 serine were synthesized and used to synthesize two peptides, one containing 1 80-serine/' 5 N glycine and second 1 60-serine/1 4N-glycine. Methods were developed for hydrolyzing the peptides and quantitatively isolating glycine. Partitioning results suggest that catalytic rate was slow compare to substrate dissociation. The 180 primary isotope effect will be determined in the near future using the method developed herein.
2

Mechanism of the Adenosine 3',5'-Monophosphate Dependent Protein Kinase

Kong, Cheng-Te 05 1900 (has links)
Isotope partitioning experiments were carried out with the adenosine 3',5'-monophosphate-dependent protein kinase catalytic subunit (cAPK) from bovine hearts to obtain information on the order of addition of reactants and the relative rates of reactant release from enzyme compared to the catalytic step(s). A value of 100% trapping for both ErMgATP-[γ-32P] and E:3H-Serpeptide at low Mgf indicates that MgATP and Serpeptide dissociate slowly from the enzyme compared to the catalytic step(s). The K_Serpeptide for MgATP trapping is 17 μM, while the K_MgATP for Serpeptide trapping is 0.58 mM. The latter data indicate that the off-rate for MgATP from the E:MgATP complex is 14 s^-1 while that for Serpeptide from the E: Serpeptide complex is 64 s^-1. At high Mg^, 100% trapping is obtained for the E:MgATP-[γ-32P] complex but only 40% is obtained for the E:Serpeptide complex. Thus, the off-rate for Serpeptide from the E:MgATP:Serpeptide complex becomes significant at high Mg_f. Data suggest a random mechanism in which MgATP is sticky. The V for the cAPK reaction increases 1.5-1.7 fold in the presence of the R_II in the presence of saturating cAMP at a stoichiometry of R:C of 1:1. No change is obtained with the type-I complex under these conditions. At higher ratio of R:C (up to 100) no further change is observed with the type-II complex but inhibition by the type-I R_2(cAMP)_4 complex competitive vs. Serpeptide is observed. The activiation observed in the presence type-II R_2(cAMP)_4 effects neither the K_m for Serpeptide nor the K_m for MgATP. Both the activating affect of the type-II complex and the inhibitory effect of the type-I complex are dependent on the Mg_f with more type-II activation obtained the higher the Mg_f and more type-I complex required for inhibition the higher the Mg_f. The activation and inhibition are discussed in terms of the mechanism of the protein kinase.
3

Identification of the RNA Cis-Elements that Interact with SRp30a to Regulate the Alternative Splicing of Caspase 9 Pre-mRNA

Mukerjee, Prabhat 01 January 2005 (has links)
Studies have shown that the alternative splicing of caspase 9 and the phospho-status of SR proteins, a conserved family of splicing factors, are regulated by chemotherapy and de novo ceramide via the action of protein phosphatase-1 (PP1). Two RNA splice variants are derived from the caspase 9 gene, pro-apoptotic caspase 9a and anti-apoptotic caspase 9b, via alternative splicing by either the inclusion or exclusion of an exon 3, 4, 5, and 6 cassette. In this study, the link between SR proteins and the alternative splicing of caspase 9 was established. Sequence analysis of the exon 3, 4, 5, and 6 cassette of the caspase 9 gene identified five possible high affinity sequences for interaction with the SR protein, SRp30a, a well-established regulator of exon inclusion/exclusion. Replacement mutagenesis identified purine-rich sequences between exons 4 and 5 and wthin exon 6 as important for binding SRp30a and required for expression of the caspase 9a splice variant. In vitro binding assays coupled with competitor studies demonstrated specific binding of RNA trans-acting proteins and SRp30a with these sequences. Furthermore, SDS-PAGE analysis of cross-linked RNA trans-acting factors with these possible RNA cis-elements revealed the specific binding of an approximate 66, 56, 45, and 38 kDa protein/protein complex to these sequences. A previous application of RNAi technology to downregulate SRp30a in A549 lung adenocarcinoma cells induced an approximately 75% decrease in SRp30a expression and induced a dramatic change in the ratio of caspase 9a/caspase 9b. Therefore, these studies have identified SRp30a as a major regulator of the alternative splicing of caspase 9 directly linking de novo ceramide generation, PP1, and SRp30a as the signal transduction pathway regulating the expression of caspase 9.

Page generated in 0.0118 seconds