• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 36
  • 34
  • 25
  • 19
  • 9
  • 8
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 363
  • 363
  • 100
  • 93
  • 81
  • 73
  • 59
  • 54
  • 50
  • 46
  • 39
  • 37
  • 36
  • 31
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

An Adaptive Method of Joining Composite Structural Members

McFall, Bruce Daniel 26 December 2014 (has links)
No description available.
182

Elucidation of Stabilization Pathways of Polyacrylonitrile by <sup>13</sup>C-<sup>13</sup>C and <sup>1</sup>H-<sup>13</sup>C Two Dimensional Solid-State NMR

Liu, Xiaoran 28 May 2015 (has links)
No description available.
183

Non-destructive Evaluation Measurements and Fracture Effects in Carbon/Epoxy Laminates Containing Porosity

Hakim, Issa A. 28 August 2017 (has links)
No description available.
184

Treatment of Microcontaminants in Drinking Water

Srinivasan, Rangesh 14 August 2009 (has links)
No description available.
185

Applying Finite Element Analysis with a Focus on Tensile Damage Modeling of Carbon Fiber Reinforced Polymer Laminates

Willis, Brice Matthew 13 September 2013 (has links)
No description available.
186

Thermoplastic Composite with Vapor Grown Carbon Fiber

Lee, Jaewoo January 2005 (has links)
No description available.
187

Characterization of Carbon Mat Thermoplastic Composites: Flow and Mechanical Properties

Caba, Aaron C. 12 October 2005 (has links)
Carbon mat thermoplastics (CMT) consisting of 12.7 mm or 25.4 mm long, 7.2 micrometer diameter, chopped carbon fibers in a polypropylene (PP) or poly(ethylene terephthalate) (PET) thermoplastic matrix were manufactured using the wetlay technique. This produces a porous mat with the carbon fibers well dispersed and randomly oriented in a plane. CMT composites offer substantial cost and weight savings over typical steel construction in new automotive applications. In production vehicles, automotive manufacturers have already begun to use glass mat thermoplastic (GMT) materials that use glass fiber as the reinforcement and polypropylene as the matrix. GMT parts have limitations due to the maximum achievable strength and stiffness of the material. In this study the glass fibers of traditional GMT are replaced with higher strength and higher stiffness carbon fibers. The tensile strength and modulus and the flexural strength and modulus of the CMT materials were calculated for fiber volume fractions of 10-25%. Additionally, the length of the fiber (12.7 mm or 25.4 mm) was varied and four different fiber treatments designed to improve the bond between the fiber and the matrix were tested. It was found that the fiber length had no effect on the mechanical properties of the material since these lengths are above the critical fiber length. The tensile and the flexural moduli of the CMTs were found to increase linearly with the FVF up to 25% FVF for some treatments of the fibers. For the other treatments the linearly increasing trend was valid up to 20% FVF, then stiffness either stayed constant or decreased as the FVF was increased from 20% to 25% . The strength versus FVF curves showed trends similar to those of the modulus versus FVF curves. It is shown that choosing an appropriate sizing can extend the usable FVF range of the CMT by at least 5%. Published micromechanical relations over-predicted the tensile modulus of the composite by 20-60%. An empirical fiber efficiency relation was fit to the experimental data for the tensile modulus and the tensile strength giving excellent agreement with the experimental results. Flow tests simulating the compression molding process were conducted on the CMT to determine what factors affect the flow viscosity of the CMT. The melt viscosity of the neat PP was measured using cone and plate rheometry at temperatures between 180°C–210°C and was fit with the Carreau relation. The through thickness packing stress of the CMT mat was measured for FVFs of 8-40% and was found to follow a power law behavior based on the local bending of fibers up to a FVF of 20.9%. Above this FVF the power law exponent decreases, and this is attributed to fracture of some of the fibers. Heated platens were used to isothermally squeeze the CMT at axial strain rates of 0.02-6 s^-1. The plot of the load-displacement behavior for the 10% FVF CMT was similar in shape to that for a fluid with a yield stress. For FVFs of 15-25% the load-displacement curves showed a load spike at the beginning of the flow, then followed the curve for a fluid with a yield stress. The matrix was burned off the squeezed samples, and the remaining carbon mat was dissected and visually inspected. It was found that fiber breakage increased and fiber length decreased as the FVF of the sample was increased. / Ph. D.
188

Modeling Fiber Orientation using Empirical Parameters Obtained from Non-Lubricated Squeeze Flow for Injection Molded Long Carbon Fiber Reinforced Nylon 6,6

Boyce, Kennedy Rose 24 March 2021 (has links)
Long fiber reinforced thermoplastic composites are used for creating lightweight, but mechanically sound, automotive components. Injection molding is a manufacturing technique commonly used for traditional thermoplastics due to its efficiency and ability to create complex geometries. Injection molding feedstock is often in the form of pellets. Therefore, fiber composites must be chopped for use in this manufacturing method. The fibers are cut to a length of 13 mm and then fiber attrition occurs during processing. The combination of chopping the fibers into pellets and fiber breakage creates a distribution of mostly short fiber lengths, with some longer fibers remaining. Discontinuous fiber reinforcements are classified as long for aspect ratios greater than 100. For glass fibers, that distinction occurs at a length of 1 mm, and for carbon fibers 0.5 mm. Traditional composite materials and manufacturing processes utilize continuous fibers with a controlled orientation and length. The use of chopped discontinuous fibers requires a method to predict the orientation of the fibers in the final molded piece because mechanical properties are dependent on fiber length and orientation. The properties and behavior of the flow of a fiber reinforced polymer composite during molding are directly related to the mechanical properties of the completed part. Flow affects the orientation of the fibers within the polymer matrix and at locations within the mold cavity. The ability to predict, and ultimately control, flow properties allows for the efficient design of safe parts for industrial uses, such as vehicle parts in the automotive industry. The goal of this work is to test material characterization techniques developed for measuring and predicting the orientation of fiber reinforced injection molded thermoplastics using commercial grade long carbon fiber (LCF) reinforced nylon 6,6 (PA 6,6). Forty weight percent LCF/PA 6,6 with a weight averaged fiber length of 1.242 mm was injection molded into center gated disks and the orientation was measured experimentally. A Linux based Numlab flow simulation process that utilizes the finite element method to model the flow and orientation of fiber reinforced materials was tested and modified to accurately predict the orientation for this composite and geometry. Fiber orientation models used for prediction require the use of empirical parameters. A method of using non-lubricated squeeze flow as an efficient way to determine the strain reduction factor, , and Brownian motion like factor, CI, parameters for short glass fiber polypropylene orientation predictions using the strain reduction factor (SRF) model was extended to use with the LCF/PA 6,6 composite. The 40 weight percent LCF/PA 6,6 material was compression molded and underwent non-lubricated squeeze flow testing. The flow was simulated using finite element analysis to predict the fiber orientation using the SRF model. The empirical parameters were fit by comparing the simulated orientation to experimentally measured orientation. This is a successful method for predicting orientation parameters that is significantly more efficient than optimizing the parameters based on fitting orientation generated in injection molded pieces. The determined orientation parameters were then used to reasonably predict the fiber orientation for the injection molded parts. The authors proved that the experimental and simulation techniques developed for the glass fiber reinforced polypropylene material are valid for use with a different, more complex material. / Doctor of Philosophy / Fibers reinforce thermoplastic polymers to create lightweight, but mechanically sound, automotive parts. Thermoplastics flow when heated and harden when cooled. This work compares two of the commonly used thermoplastics, polypropylene (plastic grocery bags, food storage containers) with a glass fiber reinforcement and a form of nylon called PA 6,6 with a carbon fiber reinforcement. Injection molding is a manufacturing technique commonly used for un-reinforced thermoplastics due to its efficiency and ability to create complicated shapes. Injection molding feedstock is often in the form of pellets. Therefore, fiber composites must be chopped for use in this manufacturing method. The fibers are cut to a length of 13 mm and then fiber breakage occurs in the injection molder. The combination of chopping the fibers into pellets and fiber breakage creates a range of lengths. This distribution consists of mostly short fiber lengths, with some longer fibers remaining. Discontinuous fiber reinforcements are classified as long for aspect ratios (the ratio of length over diameter) greater than 100. For glass fibers, that distinction occurs at a length of 1 mm, and for carbon fibers 0.5 mm. Traditional composite materials and manufacturing processes utilize continuous fibers with a controlled orientation and length, such as the weave pattern one might see in a carbon fiber hood. The use of chopped fibers requires a method to predict the orientation of the fibers in the final molded piece because mechanical properties are dependent on fiber length and orientation. The way that the plastic flows during molding is directly related to the mechanical properties of the completed part because flow affects the way that the fibers arrange. The ability to predict, and ultimately control, flow properties allows for the efficient design of safe parts for industrial uses, such as vehicle parts in the automotive industry. The goal of this work is to test the techniques developed for measuring and predicting the orientation of fiber reinforced injection molded thermoplastics using commercial grade long carbon fiber (LCF) reinforced nylon 6,6 (PA 6,6). LCF/PA 6,6 with an average fiber length of 1.242 mm was injection molded into a disk and the orientation was measured experimentally. A computer flow simulation process that utilizes the finite element method to model the flow and orientation of fiber reinforced materials was tested and modified to accurately predict the orientation for this composite and geometry. Fiber orientation models used for prediction require the use of parameters. There is no universal method for determining these parameters. A method of using non-lubricated squeeze flow as an efficient way to determine the parameters for short glass fiber polypropylene orientation predictions was extended to use with the LCF/PA 6,6 composite. The LCF/PA 6,6 material was compression molded and underwent non-lubricated squeeze flow testing. The flow was modeled to predict the fiber orientation. The empirical parameters were fit by comparing the simulated orientation to experimentally measured orientation. This is a successful method for predicting orientation parameters. The determined orientation parameters were then used to reasonably predict the fiber orientation for the injection molded parts. The authors proved that the experimental and simulation techniques developed for the glass fiber reinforced polypropylene material are valid for use with a different, more complex material.
189

Fatigue, Fracture and Impact of Hybrid Carbon Fiber Reinforced Polymer Composites

Yari Boroujeni, Ayoub 25 January 2017 (has links)
The excellent in-plane strength and stiffness to-weight ratios, as well as the ease of manufacturing have made the carbon fiber reinforced polymer composites (CFRPs) suitable structural materials for variety of applications such as aerospace, automotive, civil, sporting goods, etc. Despite the outstanding performance of the CFRPs along their fibers direction (on-axis), they lack sufficient strength and performance in the out-of-plane and off-axis directions. Various chemical and mechanical methods were reported to enhance the CFRPs' out-of-plane performance. However, there are two major drawbacks for utilizing these approaches: first, most of these methods induce damage to the carbon fibers and, therefore, deteriorate the in-plane mechanical properties of the entire CFRP, and second, the methods with minimal deteriorating effects on the in-plane mechanical performance have their own limitations resulting in very confined mechanical performance improvements. These methods include integrating nano-sized reinforcements into the CFRPs' structure to form a hybrid or hierarchical CFRPs. In lieu to all the aforementioned approaches, a relatively novel method, referred to as graphitic structures by design (GSD), has been proposed. The GSD is capable of grafting carbon nanotubes (CNTs) onto the carbon fibers surfaces, providing high concentration of CNTs where they are most needed, i.e. the immediate fiber/matrix interface, and in-between the different laminae of a CFRP. This method shows promising improvements in the in-plane and out-of-plane performance of CFRPs. Zinc oxide (ZnO) nanorods are other nano-sized reinforcing structures which can hybridize the CFRPs via their radially growth on the surface of carbon fibers. Among all the reported methods for synthesizing ZnO nanorods, hydrothermal technique is the most straightforward and least destructive route to grow ZnO nanorods over carbon fibers. In this dissertation, the GSD-CNTs growth method and the hydrothermal growth of ZnO nanorods have been utilized to fabricate hybrid CFRPs. The effect of different ZnO nanorods growth morphologies, e.g. size distribution and alignment, on the in-plane tensile performance and vibration attenuation capabilities of the hybrid CFRPs are investigated via quasi-static tension and dynamical mechanical analysis (DMA) tests, respectively. As a result, the in-plane tensile strength of the hybrid CFRPs were improved by 18% for the composite based on randomly oriented ZnO nanorods over the carbon fibers. The loss tangent of the CFRPs, which indicates the damping capability, increased by 28% and 19% via radially and randomly grown ZnO nanorods, respectively. While there are several studies detailing the effects of dispersed nanofillers on the fracture toughness of FRPs, currently, there are no literature detailing the effect of surface GSD grown CNTs and ZnO nanowire -on carbon fiber- on the fracture toughness of these hybrid composites. This dissertation probes the effects of surface grown nano-sized reinforcements on the fracture toughness via double cantilever beam (DCB) tests on hybrid ZnO nanorod or CNT grafted CFRPs. Results show that the surface grown CNTs enhanced the Mode I interlaminar fracture toughness (GIc) of the CFRPs by 22% and 32%, via uniform and patterned growth morphologies, respectively, over the reference composite based on untreated carbon fiber fabrics. The dissertation also explains the basis of the improvements of the fracture toughness via finite element method (FEM). In particular, FEM was employed to simulate the interlaminar crack growth behavior of the hybrid CFRPs under Mode I crack opening loading conditions embodied by the DCB tests. These simulations revealed that the hybrid CFRP based on fibers with uniform surface grown MWCNTs exhibited 55% higher interlaminar strength compared to the reference CFRPs. Moreover, via patterned growth of MWCNTs, the ultimate crack opening resistance of the CFRPs improved by 20%. To mimic the experimental behavior of the various CFRPs, a new methodology has been utilized to accurately simulate the unstable crack growth nature of CFRPs. Several investigations reported the effects of adding nanomaterials-including CNTs- as a filler phase inside the matrix material, on the impact energy absorption of the hybrid FRPs. However, the impact mitigation performance of CFRPs based on ZnO nanorod grafted carbon fibers has not been reported. The dynamic out-of-plane energy dissipation capabilities of different hybrid composites were investigated utilizing high velocity (~90 m/s) impact tests. Comparing the results of the hybrid MWCNT/ZnO nanorod/CFRP with those of reference CFRP, 21% and 4% improvements were observed in impact energy absorption and tensile strain to failure of the CFRPs, respectively. In addition to elevated stiffness and strength, CFRPs should possess enough tolerance not only to monotonic loadings, but also to cyclic loadings to be qualified as alternatives to traditional structural metal alloys. Therefore, the fatigue life of CFRPs is of much interest. Despite the promising potential of incorporating nano-sized reinforcements into the CFRPs structure, not many studies reported on the fatigue behavior of hybrid CFRPs so far. In particular, there are no reported investigations to the effect of surface grown CNTs on the fatigue behavior of the hybrid CFRPs, due to fact that almost all the CNT growth techniques (except for the GSD method) deteriorated the in-plane performance of the hybrid CFRPs. The hybrid ZnO nanorod grafted CFRPs have not been investigated under fatigue loading as well. In this dissertation, different hybrid CFRPs were tested under tension-tension fatigue to reveal the effects of the different nano-reinforcements growth on the fatigue behavior of the CFRPs. A remarkable fatigue damage tolerance was observed for the CFRPs based on uniform and patterned grown CNT fibers. Almost two decades of fatigue life extension was achieved for CFRPs based on surface grown MWCNTs. / Ph. D.
190

Polymeric Complexes and Composites for Aerospace and Biomedical Applications

Zhang, Rui 01 August 2018 (has links)
Polymers, among metals and ceramics, are major solid materials which are widely used in all kinds of applications. Polymers are of particular interest because they can be tailored with desirable properties. Polymer-based complexes and composites, which contain both the polymers and other components such as metal oxide/salts, are playing a more and more important role in the material fields. Such complexes and composites may display the benefits of both the polymer and other materials, endowing them with excellent functionalities for targeted applications. In this dissertation, a great deal of research was conducted to synthesize novel polymers and build polymeric complexes and composites for biomedical and aerospace applications. In chapter 3, two methods were developed and optimized to fabricate sub-micron high-performance polymer particles which were subsequently used to coat onto functional carbon fibers via electrostatic interactions, for the purpose of fabricating carbon fiber reinforced polymer composites. In chapter 4, a novel Pluronic® P85-bearing penta-block copolymer was synthesized and formed complexes with magnetite. The complexes displayed non-toxicity to cells normally but were able to selectively kill cancer cells without killing normal cells when subjected to a low-frequency alternating current magnetic field. Such results demonstrated the potential of such polymeric complexes in cancer treatment. Chapter 5 described the synthesis of several ionic graft copolymers primarily bisphosphonate-containing polymers, and the fabrication of polymer-magnetite complexes. The in-depth investigation results indicated the capability of the complexes for potential drug delivery, imaging, and other biomedical applications. Chapter 6 described additional polymer synthesis and particle or complex fabrication for potential drug delivery and imaging, as well as radiation shielding. / PHD / Polymers, metals, and ceramics are three major classes of solid materials that are used every day and everywhere. Polymers are of particular significance because they can be tailored to possess certain desirable properties, and, hence, they are playing a more and more important role as substitutes for metals and ceramics in a wide array of applications. Engineering and high-performance polymers were synthesized with excellent properties for biomedical and aerospace applications. Polymers can be fabricated into composites and complexes which contain not only polymers but also other materials, such as metal oxides/salts, carbon fibers, glass fibers, etc. When composites and complexes are made with sufficient stability, the materials may display the advantages of each component, making them more promising for specific applications. In this dissertation, effort was focused on developing versatile polymer-based complexes and composites for aerospace and biomedical applications. Chapter 3 describes the fabrication of sub-micron high-performance polymer particles by two methods and they were subsequently coated onto functional carbon fibers for making composites. Chapter 4 describes the synthesis of a novel copolymer that formed complexes with magnetite nanoparticles. The complexes were able to selectively kill cancerous cells without killing normal cells when exposed to an external magnetic field, and thus these materials have potential for cancer treatment. Chapter 5 describes the fabrication of phosphonate-bearing ionic copolymer-magnetite complexes and their potential applications in drug delivery, imaging, and other biomedical applications. Chapter 6 describes the synthesis of polymers and their corresponding complexes for potential drug delivery and imaging, as well as potential radiation shielding applications.

Page generated in 0.0387 seconds