841 |
Seasonal variability of sea surface carbonate chemistry and temperatureMatthews, John Brian Robin 20 December 2013 (has links)
Ocean uptake of anthropogenic CO2 causes ocean acidification, a secular, global-scale decline in the pH of seawater. In order to better understand the implications of contemporary acidification for marine organisms and ecosystems, there is a need to better characterise natural variability in carbonate chemistry. In this thesis, climatological seasonal variability of sea surface pH and aragonite saturation state (OmegaA) in the open ocean is indirectly derived from other parameters of the marine CO2 system, namely total alkalinity (TA) and seawater pCO2/fCO2 (pCO2sw/fCO2sw). New monthly sea surface TA, fCO2sw and temperature climatologies are developed for this purpose, utilising newly-released observational synthesis products (PACIFICA for TA and SOCAT v2 for fCO2sw). Two versions of the new SST climatology are developed, referred to as upper and lower SST (USST and LSST), to test sensitivity to the depth range of the input observations. Annual ranges are generally found to be larger for the USST climatology, derived using observations from the upper 2 m, compared to LSST (which is based on deeper observations). Further, a seasonal cycle is found in the monthly average of the differences between these climatologies north of 30 degN, perhaps partly due to seasonal variation in near-surface stratification. The USST seasonal ranges are also found to be generally larger than in two previous SST climatologies, however, difference in the depth distribution of the input measurements is unlikely the main cause. The new monthly sea surface TA climatology extends coverage into the Nordic seas, excluded from previous climatologies. TA seasonality is found to be small outside of regions with large seasonal ranges in salinity. Large seasonal ranges in salinity and TA are found beneath the Intertropical Convergence Zone, in the Antarctic seasonal sea ice zone and in the western Greenland Sea. Non-salinity driven TA seasonality is found to be large in the Gulf of Alaska, eastern equatorial Pacific and western Greenland Sea. Compared to the Lee et al. (2006) TA climatology, substantially lower annual means and seasonal ranges are found for the subarctic Pacific, a region with greatly improved coverage courtesy of PACIFICA. The pH/OmegaA climatologies derived in the final chapter suggest pH seasonality is predominantly temperature driven in the subtropics and mainly driven by variation in salinity normalised dissolved inorganic carbon (sDIC) in the subpolar north Atlantic, western subarctic Pacific and Southern Ocean. Salinity variation is found to only exert a strong influence on pH seasonality in the western Greenland Sea. Climatological seasonal pH ranges are found to be mostly small in the tropics (<0.05), moderate in the subtropics (0.05-0.10) but very large (>0.1) in parts of the Ross, Weddell, Irminger and Iceland Seas and western subarctic Pacific gyre. OmegaA seasonality is found to be predominantly sDIC-driven everywhere except in the western Greenland Sea, with temperature variation generally being of modest influence. Seasonal cycles of pH and OmegaA are found to be in anti-phase where pH is mainly thermally driven and in-phase where pH is mainly sDIC-forced (both pH and OmegaA vary inversely with DIC). Comparison is made between the primary new pH/OmegaA climatology and various open ocean carbonate chemistry time-series. The climatology captures the general form of the climatological seasonal cycles of pH and OmegaA from the time-series, although with some differences in phasing and seasonal range. Analysing the time-series for long-term trends, I find that inter-decadal anthropogenic CO2 uptake driven pH and OmegaA declines can be modulated by trends in temperature, salinity or sTA. Investigation is also conducted into how the amplitude of pH and OmegaA seasonal cycles might change by 2100 for a subpolar and subtropical time-series. Under a high CO2 emissions scenario, the seasonal range of pH is found to be strongly enhanced for the subpolar time-series and moderately reduced for the subtropical time-series, with both being due to changes in seawater buffer capacity. / Graduate / 0425 / 0415 / robdj87@hotmail.com
|
842 |
Evaluation and Control of Pirssonite Scale Formation in Green Liquor Systems of the Kraft ProcessZakir, Tasnuva 04 December 2012 (has links)
Scaling in green liquor handling systems is a persistent problem in many kraft mills. Scaling is commonly believed to be the result of pirssonite (Na2Ca(CO3)2∙2H2O) deposition. In this work, scale characterization was performed by analyzing 12 scale samples obtained from 10 kraft mills. Only 4 samples were identified as pirssonite while the remaining consisted of CaCO3. The predominant presence of CaCO3 in the scale samples was found to be the result of selective dissolution of Na2CO3 from pirssonite scale, leaving CaCO3 behind. Experimental studies were also conducted to study pirssonite solubility under green liquor conditions. Results obtained from these studies were used to create and validate a database for pirssonite in the OLI Systems® software to predict its formation. This database was used to generate a family of pirssonite solubility curves that can be used by the kraft mills as operational guidelines to prevent pirssonite precipitation.
|
843 |
Evaluation and Control of Pirssonite Scale Formation in Green Liquor Systems of the Kraft ProcessZakir, Tasnuva 04 December 2012 (has links)
Scaling in green liquor handling systems is a persistent problem in many kraft mills. Scaling is commonly believed to be the result of pirssonite (Na2Ca(CO3)2∙2H2O) deposition. In this work, scale characterization was performed by analyzing 12 scale samples obtained from 10 kraft mills. Only 4 samples were identified as pirssonite while the remaining consisted of CaCO3. The predominant presence of CaCO3 in the scale samples was found to be the result of selective dissolution of Na2CO3 from pirssonite scale, leaving CaCO3 behind. Experimental studies were also conducted to study pirssonite solubility under green liquor conditions. Results obtained from these studies were used to create and validate a database for pirssonite in the OLI Systems® software to predict its formation. This database was used to generate a family of pirssonite solubility curves that can be used by the kraft mills as operational guidelines to prevent pirssonite precipitation.
|
844 |
Analysis of chemical signals from complex oceanic gas hydrate ecosystems with infrared spectroscopyDobbs, Gary T. 30 October 2007 (has links)
Substantial amounts of methane are sequestered in naturally occurring ice-like formations known as gas hydrates. In particular, oceanic gas hydrates are globally distributed in complex heterogeneous ecosystems that typically occur at depths exceeding 300 m. Gas hydrates have received attention for their potential as an alternative energy resource, as marine geohazards, and their role in cycling of greenhouse gases. In addition, chemosynthetic communities often play a vital role in the cycling and sequestration of carbon emanating from cold hydrocarbon seeps surrounding hydrate sites. Research efforts are presently striving to better understand the significance and complexity of these ecosystems through the establishment of seafloor observatories capable of long-term monitoring with integrated sensor networks. In this thesis, infrared (IR) spectroscopy has been implemented for the investigation of molecular-specific signatures to monitor gas hydrate growth dynamics and evaluate carbonate minerals, which are intimately connected with complex chemosynthetic processes occurring in these harsh environments.
The first fundamental principles and data evaluation strategies for monitoring and quantifying gas hydrate growth dynamics utilizing mid-infrared (MIR) fiber-optic evanescent field spectroscopy have been established by exploiting the state-responsive IR absorption behavior of water. This has been achieved by peak area evaluation of the O-H stretch, H-O-H bend, and libration modes and assessing peak shifts in the 3rd libration overtone and libration bands during the formation and dissociation of simple clathrate hydrates of methane, ethane, and propane formed from aqueous solution. Hydrate growth and monitoring was facilitated with a customized pressure cell enabling operation up to ~5.9 MPa with spectroscopic, temperature, pressure, and video monitoring capabilities.
Furthermore, the initial feasibility for extending the developed IR spectroscopic hydrate monitoring strategies into oceanic gas hydrate ecosystems has been demonstrated through the evaluation of potential spectroscopic interferences from sediment matrices in samples collected from two hydrate sites in the Gulf of Mexico (GoM). With exception of the libration band, the primary IR absorption features of water are readily accessed within hydrated sediment samples. Additional consideration for potential long-term hydrate monitoring applications revealed that the collection of approx. 2 IR spectra per day should enable direct insight into the temporal dynamics of hydrates...
|
845 |
Patterns of distal alteration zonation around Antamina Cu-Zn skarn and Uchucchacua Ag-base metal vein deposits, Peru : mineralogical, chemical and isotopic evidence for fluid composition, and infiltration, and implications for mineral explorationEscalante Aramburu, Abraham David 11 1900 (has links)
Intrusion-related, carbonate rock–hosted replacement deposits are an important source of global base metal production that includes: Cu-Zn skarn, Zn-Pb-Ag carbonate replacement and Ag-base metal deposits. These deposits are located in multiple geological settings and are commonly associated with low-grade Cu-Mo calc-alkaline porphyry districts. Visible alteration halos to these deposits range from ten to hundreds of metres around high temperature skarn deposits, being small to imperceptible around the distal relatively low temperature members of this clan. Patterns of visible and cryptic alteration are described and constrained in this study particularly around paleo-fluid flow zones at different distances and elevations from the ore centre. This was done in order to identify the large-scale zonation, mechanisms, and effects of fluid infiltration especially into the distal portions of these deposits. The main alteration tracers employed included mineralogy, major and trace element geochemistry, oxygen and carbon isotopes, and the fluorescent signature of calcite veins associated with the fluids conduits. Two areas were selected for this study: the large Cu-Zn Antamina skarn and the Ag-base metal Uchucchacua vein deposits in the Peruvian Central Andes as these deposits represent the end-members of the polymetallic carbonate rock-hosted deposits and hence, provide an excellent opportunity to examine the margins and upper sections of these hydrothermal systems.
Geochronological analyses of intrusive dikes were used to establish the magmatic and hydrothermal evolution associated with mineralization, as well as the genetic linkage between proximal and distal portions of the mineralizing system at Antamina. Oxygen, carbon and strontium isotope data of vein minerals is also used to constrain the temperature of the fluids proximal and distal to the magmatic centre. Chemical data of fluorescent and non-fluorescent veins were used to determine the main activators of fluorescence and to constrain its relationship with mineralizing fluids.
In summary, results of this research identify a large-scale zonation of visible and cryptic alteration around paleo-fluid flow zones demonstrating the linkage between Ag-base metal veins, replacement and skarn deposits. Anomalous halos determined throughout Antamina and Uchucchacua deposits may contribute to the development of a more systematic exploration methodology for these types of deposits.
|
846 |
Eco-sedimentological environments of an inter-tidal reef platform, Warraber Island, Torres StraitHart, Deirdre E., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2003 (has links)
This thesis examines functional relationships between the morphologic, hydrodynamic, ecological and sedimentological characteristics of the Warraber reef platform, an inter-tidal reef island system, Central Torres Strait, Australia (10[degrees] 12??? S, 142 [degrees] 49??? E). Hydrodynamic and sediment-transport experiments were conducted on the reef flat using current meters, water level recorders and directional sediment traps. Results showed dominantly SE flows during the dry season and more variable NW to SE flows during the wet season. Topography and reefal water levels modulated the direction and strength of currents and the generation of wind-waves on the reef flat as well as the passage of waves over the reef rim. These hydrodynamic conditions are sufficient to induce significant transport of moderately fast to slow settling sediment (>-5.25 symbol psi) on the reef flat, though the platform as a whole is a relatively closed transport system. Carbonate production was estimated based on the key ecological variables of live assemblage distribution and cover. Overall, only 24% of the reef flat was occupied by carbonate-producing organisms. The average estimated carbonate-production rate for the reef was 1.6 kgm -2y-1 (0.07-4.37 kgm-2y-1). Production is dominated by coral (73%), with subordinate proportions contributed by coralline algae (19%). And molluscs, foraminifera and Halimeda (<4%) though actual reef-flat sediments did not reflect this potential. Instead, they were dominated by molluscs (35-55%), coralline algae (16-26%), coral (8-13%), Halimeda (7-8%) and foraminifera (5-10%). Differential rates of carbonate to sediment conversion meant the reef-platform sediments were more closely related to the cover of live organisms than to the contribution of carbonate production by each parent organism. The settling properties of the least altered particles of the five commonest constituents were measured and these provided the basis for an eco-sedimentological model of the reef-platform system. Modelled textures were compared to the actual textures, indicating the degree of textural alteration resulting from a combination of biological and physical processes, including sediment production, hydraulic sorting and mechanical breakdown. This analysis, integrated with the hydrodynamic, exposure and other data, was used to determine reef-platform surface-sediment sources, sinks and transport pathways. In using both the textual and constituent compositional properties of sediments, as well as information on local biological and physical processes, the model approach developed offers progress towards an integrative, interdisciplinary analysis of carbonate environments.
|
847 |
The phanerozoic basin-fill history of the Roebuck Basin / author, Stuart A. Smith.Smith, Stuart A. (Stuart Andrew) January 1999 (has links)
Bibliography: p.149-158. / xxii, 198 p. : ill. (chiefly col.), maps (chiefly col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Aims to provide a structural and stratigraphic framework for the evolution of the Roebuck Basin, and to evaluate its future petroleum potential. / Thesis (Ph.D.)--University of Adelaide, National Centre for Petroleum Geology and Geophysics, 2000
|
848 |
The tectonic evolution and volcanism of the Lower Wyloo Group, Ashburton Province, with timing implications for giant iron-ore deposits of the Hamersley Province, Western AustraliaMuller, Stefan G. January 2006 (has links)
[Truncated abstract] Banded iron formations of the ~27702405 Ma Hamersley Province of Western Australia were locally upgraded to high-grade hematite ore during the Early Palaeoproterozoic by a combination of hypogene and supergene processes after the initial rise of atmospheric oxygen. Ore genesis was associated with the stratigraphic break between Lower and Upper Wyloo Groups of the Ashburton Province, and has been variously linked to the Ophthalmian orogeny, late-orogenic extensional collapse, and anorogenic continental extension. Small spot PbPb dating of in situ baddeleyite by SHRIMP (sensitive highresolution ion-microprobe) has resolved the ages of two key suites of mafic intrusions constraining for the first time the tectonic evolution of the Ashburton Province and the age and setting of iron-ore formation. Mafic sills dated at 2208 ± 10 Ma were folded during the Ophthalmian orogeny and then cut by the unconformity at the base of the Lower Wyloo Group. A mafic dyke swarm that intrudes the Lower Wyloo Group and has close genetic relationship to iron ore is 2008 ± 16 Ma, slightly younger than a new syneruptive 2031 ± 6 Ma zircon age for the Lower Wyloo Group. These new ages constrain the Ophthalmian orogeny to the period <2210 to >2030 Ma, before Lower Wyloo Group extension, sedimentation, and flood-basalt volcanism. The ~2010 Ma dykes present a new maximum age for iron-ore genesis and deposition of the Upper Wyloo Group, thereby linking ore genesis to a ~21002000 Ma period of continental extension similarly recorded by Palaeoproterozoic terrains worldwide well after the initial oxidation of the atmosphere at ~2320 Ma. The Lower Wyloo Group contains, in ascending order, the fluvial to shallow-marine Beasley River Quartzite, the predominantly subaqueously emplaced Cheela Springs flood basalt and the Wooly Dolomite, a shelf-ramp carbonate succession. Field observations point to high subsidence of the sequence, rather than the mainly subaerial to shallow marine depositional environment-interpretation described by earlier workers. Abundant hydro-volcanic breccias, including hyaloclastite, peperite and fluidal-clast breccia all indicate quench-fragmentation processes caused by interaction of lava with water, and support the mainly subaqueous emplacement of the flood basalt which is also indicated by interlayered BIF-like chert/mudstones and below-wave-base turbiditic mass-flows.
|
849 |
A comparative study of avian oviducal sperm storage with special reference to factors which regulate sperm motility /Holm, Lena, January 1900 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv. / Härtill 4 uppsatser.
|
850 |
The phanerozoic basin-fill history of the Roebuck BasinSmith, Stuart A. (Stuart Andrew) January 1999 (has links) (PDF)
Bibliography: p.149-158. Aims to provide a structural and stratigraphic framework for the evolution of the Roebuck Basin, and to evaluate its future petroleum potential.
|
Page generated in 0.0151 seconds