• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L'activation des cellules T CD8+ et T CD4+ en réponse aux auto-antigènes : du tissu lymphoïde à l'organe cible / Activation of CD8+ and CD4+ T cells in response to self-antigen : from the lymphoid tissue to the target organ

Espinosa Carrasco, Gabriel 07 October 2016 (has links)
Le système immunitaire comporte différents mécanismes de tolérance périphérique permettant de contrôler la réponse des cellules T CD8+. Dans certaines conditions encore peu connues, des cellules T potentiellement auto-réactives peuvent contourner les mécanismes de tolérance et se différencier en cellules effectrices, capables d’attaquer différentes organes de l’organisme, dans un processus d’auto-réactivité. En utilisant une souris transgénique exprimant un antigène modèle dans les cellules bêta du pancréas, j’ai étudié deux processus fondamentaux impliqués dans la différenciation des cellules T CD8+ en réponse aux antigènes du soi.1) Rôle de la translocation des lipopolysaccharides (LPS) dans la rupture de la tolérance. Nous avons préalablement démontré dans le laboratoire que des protocoles de lympho-déplétions, tels l’irradiation, étaient capables d’induire une rupture de la tolérance périphérique dans les cellules T CD8+. L’irradiation provoque la translocation des LPS des bactéries commensales vers la circulation sanguine, ce qui induit une activation du système immunitaire inné. Mes données ont montré que la translocation des LPS était corrélée avec l’activation systémique des cellules dendritiques (DC) CD11c+, en particulier les DC CD8+, responsables de la cross-présentation des auto-antigènes pancréatiques dans les tissus lymphoïdes. Alors que le traitement par des antibiotiques avant l’irradiation permet de prévenir la translocation des LPS, l’activation des DC n’est que partiellement affectée, et le développement de l’auto-immunité résultant d’une rupture de la tolérance périphérique des cellules T CD8+ ne peut pas être empêchée par le traitement.2) Visualisation de la coopération entre cellules T CD4+ et CD8+ effectrices dans la destruction des cellules bêta pancréatiques in vivo. En utilisant la microscopie intra-vitale à 2-photons, j’ai pu analyser, pour la première fois, la dynamiques des cellules T CD4+ et CD8+ auto-réactives exprimant un marqueur fluorescent, lors de l’infiltration du pancréas et du développement du diabète auto-immun. J’ai mis en évidence que l’infiltration des cellules T était accompagnée d’un remodelage de la matrice extracellulaire du pancréas, permettant la migration dirigée des lymphocytes. De plus, j’ai montré que l’arrêt MHC classe II-dépendant des cellules T CD4+, dû à des interactions avec des cellules présentatrices d’antigène recrutées au site d’inflammation et impliquant dans certains cas également les cellules T CD8+, contribuait au maintien des fonctions effectrices des cellules T CD8+. / The immune system has evolved multiple mechanisms of peripheral tolerance to control CD8+ T cell responses. Under particular conditions that are not yet well understood, potentially autoreactive T cells may override tolerance and differentiate into effector cells capable of targeting the own components of the organism resulting in self-reactivity. Utilizing transgenic mice expressing a model antigen in the beta cells of the pancreas, I have studied two important processes involved in CD8+ T cells differentiation in response to self-antigens. 1) Role of lipopolysaccharides (LPS) translocation in the breakdown of CD8+ T cell tolerance. It has been previously shown in our laboratory that lymphodepleting protocols, such as total body irradiation, promote breakdown of peripheral CD8+ T cell tolerance. Irradiation induces translocation of commensal bacteria LPS, a potent innate immune system activator, into the bloodstream. My data demonstrated that LPS translocation correlated with systemic activation of CD11c+ dendritic cells (DC), in particular CD8+ DC, responsible for pancreatic self-antigen cross-presentation, in lymphoid tissue. While antibiotic treatment of mice before irradiation prevented LPS translocation, DC activation was only partially affected, and onset of autoimmunity and breakdown of CD8+ T cell tolerance could not be prevented.2) Intra-vital visualization of effector CD8+ and CD4+ T cell cooperation in beta cell destruction in the pancreas. Using two-photon microscopy, I have been able, for the first time, to simultaneously analyze dynamics of fluorescently tagged autoreactive CD8+ and CD4+ T cells as they infiltrated the pancreas and induced autoimmune diabetes. I found that T cell infiltration promoted extracellular matrix remodeling in the pancreas, which in turn served as a scaffold for T cell migration. In addition, I showed that MHC class II dependent arrest of effector CD4+ T cells, due to interactions with antigen presenting cells, occasionally also implicating CD8+ T cells, provided help to effector CD8+ T cells in maintaining their effector functions.
2

Induction de réponses mémoires lymphocytaires T CD8 et protection vaccinale après transfert de gènes par le vecteur AAV recombinant / Induction of lymphocytic memory CD8 T cell responses and vaccinal protection following genes transfer by recombinant Adeno-Associated Virus (rAAV) vector

Ghenassia, Alexandre 30 October 2015 (has links)
La mémoire immunologique est le mécanisme biologique fondamental à la base du développement de la vaccination. La compréhension de ce mécanisme ainsi que de ses interactions avec les différents acteurs du système immunitaire a permis l’élaboration de vaccins qui sont aujourd’hui les garants d’une protection accrue face à l’émergence de maladies infectieuses potentiellement mortelles. La voie d’injection et le mode de transfert de ces vaccins sont des paramètres majeurs à prendre en considération car ils définissent une modulation des réponses immunitaires et de leurs spécificités d’action. De nos jours, seule la voie intramusculaire demeure la voie majoritaire d’administration de vaccins lors de la prophylaxie primaire en santé humaine. Au cours de notre étude, nous nous sommes intéressés à comparer l’injection d’un antigène (l’ovalbumine) selon deux voies d’administration : la voie intramusculaire et la voie intradermique. Nous nous sommes également appuyés sur une technologie du laboratoire qui consiste à transférer des gènes par des vecteurs AAV2/1 recombinants. Nous disposions de deux constructions de ces vecteurs ayant une spécificité pour cibler les cellules musculaires et permettant l’apport d’un effet auxiliaire par les lymphocytes T CD4+ lors d’injections dans des souris femelles. De plus, une de ces constructions nous permettait d’éviter la voie de présentation directe de l’antigène par les cellules dendritiques (DCs) aux lymphocytes T CD8+. Les capacités modulatrices de ces vecteurs nous permirent de montrer pour la première fois que le vecteur AAV2/1 recombinant était capable de faire exprimer un transgène au sein de la peau et d’y générer une réponse cellulaire forte. Nous avons également montré qu’il existait une synergie d’action entre l’effet auxiliaire et la voie intradermique qui améliorait considérablement les réponses cellulaires issues de la présentation croisée d’antigène. Enfin, nous avons pu démontrer que les lymphocytes T CD8+ générés suite à cette synergie d’action présentaient un profil phénotypique de cellules mémoires polyfonctionnelles et capables de protéger l’hôte face à un challenge pathogénique. / Immunological memory is the fundamental biological mechanism at the beginning of the development of vaccination. Understanding this mechanism and its interactions with the various players of the immune system has allowed the development of vaccines that are today the most effective barrier against the emergence of life-threatening infectious diseases. Route of injection and the nature of carriers of these vaccines are key parameters to be taken into consideration because they define a modulation of immune responses and their specific features. Nowadays, only the intramuscular injection route remains the major route of vaccines injection in the context of primary prophylaxis in human health. During our study, we were interested in comparing the injection of antigen (ovalbumin) following two routes of administration: intramuscular and intradermal routes. We also relied on a technology in the laboratory that involves the transfer of genes by rAAV2/1 vectors. We had two constructs of these vectors having specificity to target skeletal muscle cells and allowing us to provide a helper effect from CD4+ T cells during injections into female mice recipients. Moreover, one of these constructs enabled us to avoid the direct presentation of antigens by dendritic cells (DCs) to CD8+ T cells. The capacity of modulation of these vectors allowed us to show for the first time that the rAAV2/1 vector was able to trigger the expression of a transgene in the skin, and there to generate a strong cellular response. We have also shown that CD4+ T cell help and the intradermal route of immunization synergize to improve greatly cellular responses from the cross-presentation of antigens. Finally, we have demonstrated that CD8+ T cells generated following this synergism exhibited a phenotypic profile of polyfunctional memory cells and able to protect the host against a pathogenic challenge.
3

Induction de réponses mémoires lymphocytaires T CD8 et protection vaccinale après transfert de gènes par le vecteur AAV recombinant / Induction of lymphocytic memory CD8 T cell responses and vaccinal protection following genes transfer by recombinant Adeno-Associated Virus (rAAV) vector

Ghenassia, Alexandre 30 October 2015 (has links)
La mémoire immunologique est le mécanisme biologique fondamental à la base du développement de la vaccination. La compréhension de ce mécanisme ainsi que de ses interactions avec les différents acteurs du système immunitaire a permis l’élaboration de vaccins qui sont aujourd’hui les garants d’une protection accrue face à l’émergence de maladies infectieuses potentiellement mortelles. La voie d’injection et le mode de transfert de ces vaccins sont des paramètres majeurs à prendre en considération car ils définissent une modulation des réponses immunitaires et de leurs spécificités d’action. De nos jours, seule la voie intramusculaire demeure la voie majoritaire d’administration de vaccins lors de la prophylaxie primaire en santé humaine. Au cours de notre étude, nous nous sommes intéressés à comparer l’injection d’un antigène (l’ovalbumine) selon deux voies d’administration : la voie intramusculaire et la voie intradermique. Nous nous sommes également appuyés sur une technologie du laboratoire qui consiste à transférer des gènes par des vecteurs AAV2/1 recombinants. Nous disposions de deux constructions de ces vecteurs ayant une spécificité pour cibler les cellules musculaires et permettant l’apport d’un effet auxiliaire par les lymphocytes T CD4+ lors d’injections dans des souris femelles. De plus, une de ces constructions nous permettait d’éviter la voie de présentation directe de l’antigène par les cellules dendritiques (DCs) aux lymphocytes T CD8+. Les capacités modulatrices de ces vecteurs nous permirent de montrer pour la première fois que le vecteur AAV2/1 recombinant était capable de faire exprimer un transgène au sein de la peau et d’y générer une réponse cellulaire forte. Nous avons également montré qu’il existait une synergie d’action entre l’effet auxiliaire et la voie intradermique qui améliorait considérablement les réponses cellulaires issues de la présentation croisée d’antigène. Enfin, nous avons pu démontrer que les lymphocytes T CD8+ générés suite à cette synergie d’action présentaient un profil phénotypique de cellules mémoires polyfonctionnelles et capables de protéger l’hôte face à un challenge pathogénique. / Immunological memory is the fundamental biological mechanism at the beginning of the development of vaccination. Understanding this mechanism and its interactions with the various players of the immune system has allowed the development of vaccines that are today the most effective barrier against the emergence of life-threatening infectious diseases. Route of injection and the nature of carriers of these vaccines are key parameters to be taken into consideration because they define a modulation of immune responses and their specific features. Nowadays, only the intramuscular injection route remains the major route of vaccines injection in the context of primary prophylaxis in human health. During our study, we were interested in comparing the injection of antigen (ovalbumin) following two routes of administration: intramuscular and intradermal routes. We also relied on a technology in the laboratory that involves the transfer of genes by rAAV2/1 vectors. We had two constructs of these vectors having specificity to target skeletal muscle cells and allowing us to provide a helper effect from CD4+ T cells during injections into female mice recipients. Moreover, one of these constructs enabled us to avoid the direct presentation of antigens by dendritic cells (DCs) to CD8+ T cells. The capacity of modulation of these vectors allowed us to show for the first time that the rAAV2/1 vector was able to trigger the expression of a transgene in the skin, and there to generate a strong cellular response. We have also shown that CD4+ T cell help and the intradermal route of immunization synergize to improve greatly cellular responses from the cross-presentation of antigens. Finally, we have demonstrated that CD8+ T cells generated following this synergism exhibited a phenotypic profile of polyfunctional memory cells and able to protect the host against a pathogenic challenge.
4

Induction de réponses mémoires lymphocytaires T CD8 et protection vaccinale après transfert de gènes par le vecteur AAV recombinant / Induction of lymphocytic memory CD8 T cell responses and vaccinal protection following genes transfer by recombinant Adeno-Associated Virus (rAAV) vector

Ghenassia, Alexandre 30 October 2015 (has links)
La mémoire immunologique est le mécanisme biologique fondamental à la base du développement de la vaccination. La compréhension de ce mécanisme ainsi que de ses interactions avec les différents acteurs du système immunitaire a permis l’élaboration de vaccins qui sont aujourd’hui les garants d’une protection accrue face à l’émergence de maladies infectieuses potentiellement mortelles. La voie d’injection et le mode de transfert de ces vaccins sont des paramètres majeurs à prendre en considération car ils définissent une modulation des réponses immunitaires et de leurs spécificités d’action. De nos jours, seule la voie intramusculaire demeure la voie majoritaire d’administration de vaccins lors de la prophylaxie primaire en santé humaine. Au cours de notre étude, nous nous sommes intéressés à comparer l’injection d’un antigène (l’ovalbumine) selon deux voies d’administration : la voie intramusculaire et la voie intradermique. Nous nous sommes également appuyés sur une technologie du laboratoire qui consiste à transférer des gènes par des vecteurs AAV2/1 recombinants. Nous disposions de deux constructions de ces vecteurs ayant une spécificité pour cibler les cellules musculaires et permettant l’apport d’un effet auxiliaire par les lymphocytes T CD4+ lors d’injections dans des souris femelles. De plus, une de ces constructions nous permettait d’éviter la voie de présentation directe de l’antigène par les cellules dendritiques (DCs) aux lymphocytes T CD8+. Les capacités modulatrices de ces vecteurs nous permirent de montrer pour la première fois que le vecteur AAV2/1 recombinant était capable de faire exprimer un transgène au sein de la peau et d’y générer une réponse cellulaire forte. Nous avons également montré qu’il existait une synergie d’action entre l’effet auxiliaire et la voie intradermique qui améliorait considérablement les réponses cellulaires issues de la présentation croisée d’antigène. Enfin, nous avons pu démontrer que les lymphocytes T CD8+ générés suite à cette synergie d’action présentaient un profil phénotypique de cellules mémoires polyfonctionnelles et capables de protéger l’hôte face à un challenge pathogénique. / Immunological memory is the fundamental biological mechanism at the beginning of the development of vaccination. Understanding this mechanism and its interactions with the various players of the immune system has allowed the development of vaccines that are today the most effective barrier against the emergence of life-threatening infectious diseases. Route of injection and the nature of carriers of these vaccines are key parameters to be taken into consideration because they define a modulation of immune responses and their specific features. Nowadays, only the intramuscular injection route remains the major route of vaccines injection in the context of primary prophylaxis in human health. During our study, we were interested in comparing the injection of antigen (ovalbumin) following two routes of administration: intramuscular and intradermal routes. We also relied on a technology in the laboratory that involves the transfer of genes by rAAV2/1 vectors. We had two constructs of these vectors having specificity to target skeletal muscle cells and allowing us to provide a helper effect from CD4+ T cells during injections into female mice recipients. Moreover, one of these constructs enabled us to avoid the direct presentation of antigens by dendritic cells (DCs) to CD8+ T cells. The capacity of modulation of these vectors allowed us to show for the first time that the rAAV2/1 vector was able to trigger the expression of a transgene in the skin, and there to generate a strong cellular response. We have also shown that CD4+ T cell help and the intradermal route of immunization synergize to improve greatly cellular responses from the cross-presentation of antigens. Finally, we have demonstrated that CD8+ T cells generated following this synergism exhibited a phenotypic profile of polyfunctional memory cells and able to protect the host against a pathogenic challenge.

Page generated in 0.0491 seconds