131 |
An Investigation of The Role of Amino Acids in Plant-Plant Parasitic Nematode Chemotaxis and InfestationFrey, Timothy S. January 2019 (has links)
No description available.
|
132 |
Produktion und pathophysiologische Bedeutung von Sphingosin-1-Phosphat in humanen dendritischen Zellen / Production and pathophysiological significance of sphingosine-1-phosphate in human dendritic cellsPilgram, Lisa January 2020 (has links) (PDF)
Dendritische Zellen (DCs) sind als Zielzellen des MV für dessen Pathogenese von zentraler Bedeutung und fördern sowohl Dissemination und Transmission des Virus. Auf zellulärer Ebene findet sich eine Modulation des Sphingolipidmetabolismus in MV-infizierten DC-Kulturen. S1P selbst ist ein bioaktives Sphingolipid, das über auto- und parakrine S1P-Rezeptorstimulation Funktion, Migration und Positionierung von Immunzellen, aber auch als intrazellulärer Botenstoff Calcium-Haushalt, Apoptose und Proliferation reguliert. Über die an der Vermittlung der intrazellulären S1P-Effekte beteiligten Strukturen ist bisher weniger bekannt und der S1P-Metabolismus einzelner Zellen trotz Kompartiment-abhängiger Schwankungen der S1P-Konzentrationen kaum adressiert. Für murine DCs konnte eine kontinuierliche S1P-Produktion und Sekretion nachgewiesen werden. Ob dies auch auf humane DCs zutrifft und pathophysiologisch im Rahmen einer MV-Infektion moduliert wird, ist bisher nicht bekannt. In dieser Arbeit wurde das Vorkommen S1Ps sowie dessen Metabolismus in humanen DCs quantitativ erfasst, und der Einfluss inflammatorischer, bakterieller und viraler (MV) Stimuli einbezogen. In Anbetracht der bekannten chemoattraktiven Potenz wurde nachfolgend der Beitrag S1Ps für die DC-induzierte T-Zellmigration untersucht.
Es konnte gezeigt werden, dass beide SphK Isoenzyme und auch die irreversibel degradierende SPL in humanen unreifen DCs (iDCs) auf mRNA-Ebene exprimiert werden. S1P konnte intrazellulär nachgewiesen werden, eine mit Erythroyzten vergleichbare Speicherkapazität ist nicht anzunehmen. Unter bakteriell oder inflammatorisch vermittelter Ausreifung (mDCs) wurde eine Reduktion des S1P Gehalts in DCs beobachtet. Abweichend davon behielten insbesondere stark MV infizierte DC-Kulturen die hohen S1P-Spiegel unreifer DCs bei, was möglicherweise neben der modulierten Chemokinsynthese und Oberflächenexpression ko-stimulatorischer Moleküle einen weiteren Parameter ihrer inkompletten Reifung nach MV Infektion reflektiert. Da die Veränderungen zwischen MV-infizierten DCs und mDCs nur für S1P, nicht aber für andere Sphingolipidmetaboliten messbar waren, liegt ihnen wohl eine Regulation der Sphingosinkinasen oder S1P degradierender Enzyme zugrunde. Bei unveränderter Akkumulation der hierfür spezifischen mRNAs müsste dies auf Ebene der Translation, Stabilität oder Aktivität der Enzyme beruhen.
Die indirekte Messung des extrazellulären S1Ps anhand der gegenläufigen S1P1-Dichte ließ vermuten, dass in DCs synthetisiertes S1P extrazellulär wirken konnte. Es kann dabei autokrin auf DCs wirken, beispielsweise deren Motilität oder Genexpression regulieren, ist aber auch Voraussetzung zum Aufbau eines S1P-Gradienten und damit parakriner Regulation lymphozytärer Migrationsvorgänge. Einen Beitrag S1Ps zur mDCs-induzierten T Zellchemotaxis konnte durch die erhobenen Daten mit hoher Wahrscheinlichkeit ausgeschlossen werden. Bezüglich der durch iDCs oder MV infizierte DCs induzierten T Zellchemotaxis konnte aufgrund experimenteller Limitationen keine abschließende Aussage zur Beteiligung S1Ps getroffen werden. Die T-Zellmigration auf DCs erwies sich im 2 D-System als gerichtete Bewegung. Weder Ausreifung noch MV-Infektion der DCs hatten Auswirkungen auf die Quantität der T-Zellmigration. Differentielle Expressionsmuster von Chemokinen in iDCs, mDCs und MV infizierten DCs sind jedoch bekannt und legen Variationen der Subset-Komposition innerhalb der migrierenden T Zellen nahe. Diese sollten gezielt in nachfolgenden Arbeiten untersucht werden.
Zusammenfassend weist die vorliegende Arbeit eine kontinuierliche Synthese S1Ps in DCs mit Stimulus-abhängiger Fluktuation nach. Eine MV Infektion löst dabei einen zu inflammatorischen und bakteriellen Stimuli divergenten Effekt auf den S1P-Gehalt aus mit möglichen pathophysiologischen Konsequenzen. Eine Modulation der T Zellchemotaxis und damit der DC-T-Zell-Interaktion wäre im Rahmen inflammatorischer, bakterieller oder viraler Szenarien denkbar. Unter inflammatorischen und bakteriellen Bedingungen trug S1P jedoch nicht zur T-Zellchemotaxis bei, für MV blieb dies unklar. Dahingegen zeigten weitere Experimente der Arbeitsgruppe einen autokrin vermittelten Beitrag des intrazellulär produzierten S1Ps zur Migration MV-infizierter DCs im respiratorischen Epithel und identifizierten damit einen bisher unbekannten Einflussfaktor einer erfolgreichen MV-Transmission. / As target for measles virus (MV) infection, dendritic cells (DCs) are central in MV pathogenesis also including viral dissemination and transmission. In this context, changes in sphingolipid metabolism and function of MV-infected DCs are described. Sphingosin-1-Phosphat (S1P) as a potent bioactive sphingolipid has pleiotropic functions in immunological processes. It regulates immune cell trafficking via autocrine or paracrine secretion and calcium homeostasis, apoptosis and proliferation via so far poorly defined intracellular signaling. Though compartment dependent S1P variations have been described, cell specific S1P metabolism remains mostly unclear. Little information is available in this regard for human DCs, especially under inflammatory, bacterial and viral (MV) conditions, while murine DCs were identified to continuously produce and secrete S1P.
In this study, the S1P pool in human DCs, its metabolism as well as its fluctuation in maturation and MV-infection were investigated. Considering its function as a chemoattractant, resulting consequences in T cell chemotaxis induced by DCs were addressed.
Sphingosinkinases (SphK1, SphK2), which generate, and S1P-Lyase (SPL), which irreversibly degrades S1P, were found to be expressed at the mRNA level in human immature DCs. Intracellular S1P was readily detected in immature DCs (iDCs), though they are unlikely to serve as S1P sores as described for erythrocytes. S1P concentrations decreased upon maturation triggered by cytokines (TNF α) or bacterial components (LPS). In contrast, S1P levels corresponding to those measured in iDCs were retained in MV-infected DC culture. In addition to the modulation of chemokine synthesis and surface expression of co-stimulatory molecules, retention of S1P levels may also reflect incomplete DC maturation induced by this virus. As fluctuations of the sphingolipid pool between maturing (mDCs) and infected DCs only affected levels of S1P but not its precursors, differential regulation of sphingosine kinases or degrading enzymes are most likely important in elevated S1P levels. As accumulation of mRNAs specific for SphK1, SphK2 and SPL was unaffected in MV-infected DC-cultures, regulation of the enzymes at translational, stability and/or activity level are likely to be operative.
Due to its S1P dependent internalization, S1P1 serves as a surrogate marker of extracellular S1P level. The decreased intracellular S1P concentrations in mDCs were paralleled by upregulated S1P1 expression making decreased S1P secretion likely. In MV infected DC culture secretion seems to be maintained at a level comparable to iDCs. Presuming continuous secretion of S1P, the detected S1P in DCs might contribute to S1P gradients among and within tissues, thus regulating lymphocyte migration. Findings obtained within this work do not support a role of S1P in T cell chemotaxis induced by mDCs. Experimental limitations precluded a final statement on a potential role of S1P in T cell chemotaxis induced by iDCs or MV-infected DCs. T cell chemotaxis induced by mDCs was highly directional in a two-dimensional system. At an overall quantitative basis, T cell chemotaxis induced by iDCs, mDCs or MV-infected DCs did not differ. As DCs are known to vary their chemokine expression depending on their differentiation status, it is, however, quite possible that the subset composition of the migrating T cell compartment differs; which has not been directly addressed in this work.
Altogether, this work revealed continuous production of S1P by human DCs with differentiation-dependent fluctuations. While intracellular S1P pools decreased with maturation induced by inflammatory conditions or LPS, these were fully retained upon MV infection. At a functional level, effects on T cell chemotaxis followed by differential interaction with DCs might be of pathogenetic advantage in inflammatory, bacterial or viral settings. However, S1P did not take part in T cell attraction by mDCs. Its contribution to T cell chemotaxis induced by MV infected DCs remains unsettled. However, further experiments in this research group revealed its importance in promoting migration in MV infected DCs by autocrine signaling, thus enabling efficient virus transmission.
|
133 |
A Two-Component Model For Bacterial ChemotaxisDurney, Clinton H. 26 July 2013 (has links)
No description available.
|
134 |
Investigation of Chemotaxis Genes and Their Functions in Geobacter SpeciesTran, Hoa T. 01 September 2009 (has links)
Geobacter species are δ-Proteobacteria and are often predominant in the Fe(III) reduction zone of sedimentary environments. Their abilities to remediate contaminated environments and to produce electricity have inspired extensive studies. Cell motility, biofilm formation, and type IV pili, which have been shown to be regulated by chemotaxis genes in other bacteria, all appear important for the growth of Geobacter species in changing environments and for electricity production. The genomes of Geobacter species show the presence of a significant number of chemotaxis gene homologs, suggesting important roles for them in the physiology of Geobacter species, although gene functions are not yet identified. In this study, we focus on identifying chemotaxis components and studying their functions in Geobacter species. We identified a large number of homologs of chemotaxis genes, which are arranged in six or more major clusters in the genomes of Geobacter sulfurreducens, Geobacter metallireducens, and Geobacter uraniireducens. Based on homology to known pathways, functions of some chemotaxis clusters were assigned; others appear to be unique to Geobacter species. We discuss the diversity of chemoreceptors and other signaling proteins as well the regulation of chemotaxis genes in Geobacter species. The functions of chemotaxis genes were studied in G. sulfurreducens, whose genome contains ~ 70 chemotaxis gene homologs, arranged in 6 major clusters. These chemotaxis clusters are also found in other Geobacter species with similar gene order and high level of gene identity, suggesting that our study in G. sulfurreducens could be extrapolated to other Geobacter species. We identified the function of the che5 cluster of G. sulfureducens as regulation of the biosynthesis of extracellular materials. We showed that G. sulfurreducens KN400 is chemotactic, and that this behavior is flagellumdependent. Our preliminary data indicated that G. sulfurreducens may use the che1 cluster, which is found exclusively in Geobacteraceae, to regulate chemotaxis. Our studies demonstrated important roles of chemotaxis genes in Geobacter physiology and their presence in large numbers could be one of the reasons why Geobacter species outcompete other species in bioremediation sites. Further studies are warranted for better understanding of the mechanisms of Che-like pathways and their potential use in optimization of conditions for applications of Geobacter species in bioremediation and electricity generation.
|
135 |
Quaternary Structure of Chemoreceptors in Active Signaling Complexes Differs From Crystal Structure of Isolated Fragments: Evidence From Solid-State NMRFowler, Daniel John 01 May 2010 (has links)
The receptor dimers that mediate bacterial chemotaxis form high-order signaling complexes with CheW and the kinase CheA. From the packing arrangement in two crystal structures of different receptor cytoplasmic fragments, two different models have been proposed for receptor signaling arrays: the trimers-of-dimers and hedgerow models. We identified an interdimer distance that differs substantially in the two models, labeled the atoms defining this distance through isotopic enrichment, and measured it with 13C-19F REDOR. This was done in two types of receptor samples: first, isolated bacterial membranes containing overexpressed, intact receptor, and second, soluble receptor fragments reconstituted into kinase-active signaling complexes. In both cases, the distance found was not compatible with the receptor dimer−dimer contacts observed in the trimers-of-dimers or in the hedgerow models. Comparisons of simulated and observed REDOR dephasing were used to deduce a closest-approach distance at this interface, which provides a constraint for the possible arrangements of kinase-competent receptor assemblies. An alternate model of receptor signaling is proposed, which reconciles this result with existing structural and biochemical data. Additionally, two advances to solid-state NMR methodology are described. The first is a set of strategies to protect protein samples against degradation by solid-state NMR analysis. Biochemical and spectroscopic techniques are prescribed to identify and isolate specific challenges to protein stability, allowing them to be addressed individually. For this purpose a new pulse sequence (Thermal Calibration Under Pulseload, or TCUP) is employed, which allows sample temperature to be measured with exceptional time resolution. The second NMR advance describes the creation and characterization of a 13C-19F REDOR distance-calibration standard. The inclusion compound of 4-fluorotoluene and tert-butylcalix[4]arene was used for this purpose. The compound is easily synthesized from commercially available materials, and provides a long, isolated 13C-19F distance of 4.1 Å. Dynamics within the compound allow direct observation of 19F resonances without 1H-decoupling, and provide exceptionally sharp 13C resonances; these characteristics speed the routine setup of REDOR experiments. Both methodological developments were important to performing accurate distance measurements on functionally relevant chemotaxis signaling complexes; they also pave the way for making similar measurements in other proteins of interest.
|
136 |
ATF3 regulates neutrophil migration in miceBoespflug, Nicholas January 2013 (has links)
No description available.
|
137 |
Screening for Resistance to Phytophthora Root Rot in LupinBeligala, Gayathri 18 July 2016 (has links)
No description available.
|
138 |
A Microfludic Assay Device for Study of Cell Migration on ECM-mimicking Suspended Nanofibers in Presence of Biochemical CuesDamico, Carmen Marie 12 August 2016 (has links)
Eukaryotic cell chemotaxis, or directed cell migration in response to a chemoeffector gradient, plays a central role in many important biological process such as wound healing, cancer metastasis, and embryogenesis. In vivo, cells migrate on fibrous ECM, but chemotaxis studies are typically conducted on flat substrates which fail to recapitulate ECM or 3D gel environments with heterogeneous and poorly defined biophysical properties.
To address these challenges, this thesis focused on developing a microfluidic assay device which utilizes a reductionist approach to study single cell chemotaxis on aligned, suspended ECM-mimicking nanofibers. The device is comprised of a network of microfluidic mixing channels which produce a temporally invariant, linear chemical gradient over nanofiber scaffolds in an observation channel. The microfluidic device design was guided by a numerical model and validated with experimental testing. This device was used to study mouse embryonic fibroblast NIH/3T3 response to platelet derived growth factor (PDGF) on flat polystyrene and suspended, polystyrene nanofibers with small (15 μm), and large (25 μm) spacing. Cell aspect ratio is lowest for flat polystyrene (spread morphology) and highest for large-spaced fibers (spindle morphology). Cells migrating on fibers begin to show a chemotaxis response to a PDGF gradient 10 times shallower than that required for chemotaxis response on a flat substrate. Furthermore, cells with spindle morphology maintain a robust and strong response over a broad range of chemoattractant concentration. These cells also had a 45% increase in speed and 26% increase in persistence over cells on flat polystyrene. The findings of this thesis suggest that 2D substrates may not be sufficient for studying physiologically relevant chemotaxis. / Master of Science
|
139 |
Development of Bacteria-Based Bio-Hybrid Delivery Systems: Fabrication, and Characterization of Chemotaxis and Quorum SensingSahari, Ali Akbar 09 October 2014 (has links)
Bio-hybrid approaches have recently provided a possible solution to address the challenge of on-board actuation, control and communication modules for micro/nanoscale cargo-carrying vehicles by integrating live prokaryotic or eukaryotic cells with synthetic objects. More specifically, because micro/nanoparticles are able to transport cargos efficiently and bacteria can play the role of targeted and selective delivery agents, a hybrid of these two can advance the current strategies for environmental monitoring, drug delivery and medical imaging. The main goal of this dissertation was to fabricate, assemble, and characterize different components of a mobile network of bacteria-based bio-hybrid systems for long-term applications in drug delivery and biosensing. First, a new library of bacteria-enabled delivery systems was developed by coupling live engineered bacteria with non-spherical particles and the transport of these bacteria-based systems was investigated in the absence and presence of chemical cues using microfluidic platforms. Next, a quorum-sensing (QS) based bacterial cell-cell communication network was characterized in a high-throughput manner in order to understand the coordinated behavior of the bacterial species ferrying the cargoes. Lastly, the QS behavior of a chemotactic population of the bacterial species in response to the endogenously produced signaling molecules was studied. The work presented in this dissertation lays the foundation for a well-characterized generation of bacteria-assisted cargo delivery devices with enhanced transport properties and capable of executing pre-programmed multi-agent coordinated tasks upon their arrival at the target site. / Ph. D.
|
140 |
An Experimentally-validated Agent-based Model to Study the Emergent Behavior of Bacterial CommunitiesLeaman, Eric Joshua 03 February 2017 (has links)
Swimming bacteria are ubiquitous in aqueous environments ranging from oceans to fluidic environments within a living host. Furthermore, engineered bacteria are being increasingly utilized for a host of applications including environmental bioremediation, biosensing, and for the treatment of diseases. Often driven by chemotaxis (i.e. biased migration in response to gradients of chemical effectors) and quorum sensing (i.e. number density dependent regulation of gene expression), bacterial population dynamics and emergent behavior play a key role in regulating their own life and their impact on their immediate environment. Computational models that accurately and robustly describe bacterial population behavior and response to environmental stimuli are crucial to both understanding the dynamics of microbial communities and efficiently utilizing engineered microbes in practice. Many existing computational frameworks are finely-detailed at the cellular level, leading to extended computational time requirements, or are strictly population scale models, which do not permit population heterogeneities or spatiotemporal variability in the environment. To bridge this gap, we have created and experimentally validated a scalable, computationally-efficient, agent-based model of bacterial chemotaxis and quorum sensing (QS) which robustly simulates the stochastic behavior of each cell across a wide range of bacterial populations, ranging from a few to several hundred cells. We quantitatively and accurately capture emergent behavior in both isogenic QS populations and the altered QS response in a mixed QS and quorum quenching (QQ) microbial community. Finally, we show that the model can be used to predictively design synthetic genetic components towards programmed microbial behavior. / Master of Science / Bacteria are an integral part of life and possess a host of characteristics that make them a powerful tool with which to confront many modern day problems. Using genetic engineering and the burgeoning field of synthetic biology, these single-celled organisms can be manipulated to perform many useful tasks such as detecting oil spills or other environmental pollutants, producing pharmaceuticals such as insulin, and even invading and killing cancer cells. Accurate computational simulations of microbial behavior will aid in the efficient design of such synthetic bacteria-based systems and reduce dependency on the current time-intensive “guess and check” paradigm. Towards this goal, we have built a comprehensive computer simulation of bacterial swimming behavior, response to chemo-effector concentration gradients called chemotaxis, a form of microbial communication called quorum sensing (QS), and a form of communication disruption called quorum quenching (QQ). Not only do we demonstrate an unprecedented level of accuracy in predicting experimental results, but we also couple the simulation with synthetic biology to precisely tune bacteria QS behavior, neither of which have previously been reported in literature. The overarching outcome of this thesis is a tool that could be used to improve the design process of useful bacteria-based systems in diverse areas of biotechnology.
|
Page generated in 0.021 seconds