• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 26
  • 6
  • 6
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 123
  • 59
  • 42
  • 25
  • 25
  • 23
  • 23
  • 22
  • 22
  • 17
  • 16
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Biological Basis of Joint Ankylosis: Studies in the ank/ank Mouse

Las Heras, Facundo 08 March 2011 (has links)
The first objective of my work was to use the ank/ank (progressive ankylosis) mutant mice, which have a deficiency in inorganic pyrophosphate transport, to address the role of Ank in joint ankylosis. I observed the presence of hypertrophic chondrocytes in the uncalcified ank/ank mice articular cartilage. This novel phenotype is likely due to a dysregulation of chondrocyte maturation as these chondrocytes expressed hypertrophic chondrocyte markers (collagen type X and tissue non-specific alkaline phosphatase). I also showed by immunohistochemical staining that beta-catenin expression was upregulated and localized in the nuclei of articular ank/ank chondrocytes, suggesting activation of Wnt/beta-catenin signaling in these chondrocytes. The second objective was to use ank/ank mice as an informative model for understanding ankylosis mechanisms in human ankylosing spondylitis (AS) patients, as WNT/beta-catenin signaling plays an important role in ankylosis in AS patients. We attempted rescue of joint ankylosis in ank/ank mice by gene transfer of noggin, an antagonist of BMP signaling. Paradoxically, noggin-treated ank/ank mice had accelerated ankylosis, as evidenced by joint pathology and IHC staining of beta-catenin showed more intense signals in the spinal chondrocytes of the treated mice. As noggin and sclerostin (an antagonist of beta-catenin signaling) form a mutually inhibitory complex, we hypothesize that the formation of this complex results in relieving suppression of both beta-catenin and BMP signaling, leading to more severe ankylosis in ank/ank mice. By quantitative molecular imaging, I have demonstrated that ankylosis in these mutant mice developed simultaneously in distal and axial joint, instead of being a centripetal process. In summary, I have made three original observations in the ank/ank mice: the hypertrophic chondrocyte phenotype; activation of beta-catenin signaling and the simultaneous development of ankylosis in distal and axial joints. These mutant mice serve as valuable model for pre-clinical studies which enable modeling and testing of novel anti-ankylosis treatments.
12

A systems biology approach to knee osteoarthritis

Soul, Jamie January 2017 (has links)
A hallmark of the joint disease osteoarthritis (OA) is the degradation of the articular cartilage in the affected joint, debilitating pain and decreased mobility. At present there are no disease modifying drugs for treatment of osteoarthritis. This represents a significant, unmet medical need as there is a large and increasing prevalence of OA. Using a systems biology approach, we aimed to better understand the pathogenic mechanisms of OA and ultimately aid development of therapeutics. This thesis focuses on the analysis of gene expression data from human OA cartilage obtained at total knee replacement (TKR). This transcriptomics approach gives a genome-wide overview of changes, but can be challenging to interpret. Network-based algorithms provide a framework for the fusion of knowledge so allowing effective interpretation. The PhenomeExpress algorithm was developed as part of this thesis to aid the interpretation of gene expression data. PhenomeExpress uses known disease gene associations to identify relevant dysregulated pathways in the data. PhenomeExpress was further developed into an 'app' for Cytoscape, the widely used network analysis and visualisation platform. To investigate the processes that occur during the degradation of cartilage we examined the gene expression of damaged and intact OA cartilage using RNA-Seq and identified key altered pathways with PhenomeExpress. A regulatory network driven by four transcription factors accounts for a significant proportion of the observed differential expression of damage-associated genes in the PhenomeExpress identified pathways. We further explored the role of the cytokines IL-1 and TNF that have been reported to β drive the progression of OA. Comparison of the expression response of in vitro cytokine-treated explants with the in vivo damage response revealed major differences, providing little evidence for any significant role of IL-1 and TNF as drivers of OA β damage in vivo. Finally, we examined the heterogeneity of OA through analysis of cartilage expression profiles at TKR. Through a network-based clustering method, we found two subgroups of patients on the basis of their gene expression profiles. These subgroups were found to have distinct OA expression perturbations and we identified TGF and S100A8/9 β signalling as potentially explaining the observed differential expression. We developeda RT-qPCR based classifier that allowed classification of new samples into these subgroups so allowing future assessment of the clinical significance of these subgroups. The work presented in this thesis includes a novel, widely-accessible tool for the analysis of disease gene expression data, which we used to give new insights into the pathogenesis of osteoarthritis. We have produced a rich dataset for future research and our analysis of this data has increased our understanding of cartilage damage processes and the heterogeneity of OA.
13

Integration Capacity of Human Induced Pluripotent Stem Cell-Derived Cartilage / ヒトiPS細胞由来軟骨の癒合能の検討

Chen, Xike 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21657号 / 医博第4463号 / 新制||医||1035(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 戸口田 淳也, 教授 松田 秀一, 教授 安達 泰治 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
14

Modulation of Inflammation and Oxidative Stress in Canine Chondrocytes

Dycus, David L 15 December 2012 (has links)
Little research has focused on the involvement of oxidative stress as it relates to the pathophysiology of osteoarthritis (OA); while inflammation has been extensively studied. The present study evaluates the ability to modulate the response of canine chondrocytes to both inflammation and oxidative stress in an in-vitro model. Chondrocytes were incubated and then stimulated to under-go oxidative stress by using hydrogen peroxide or inflammation using interleukin-1 beta and tumor necrosis factor alpha. For inhibition of oxidative stress an antioxidant, N-acetyl-cysteine, was used prior to induction with hydrogen peroxide in a subset of chondrocytes. Measures of oxidative stress were superoxide dismutase and reduced glutathione. Prostaglandin E2 was used as a measurement of inflammation. Chondrocytes responded appropriately to both oxidative stress and inflammation. The antioxidant N-acetyl-cysteine provided adequate protection against oxidative stress. Oxidative stress and inflammation should be considered to play a role in the pathophysiology of canine OA.
15

A Comparison of the Wear Resistance of Normal, Degenerate, and Repaired Human Articular Cartilage

Steika, Nils A. 15 November 2004 (has links)
In our aging population, arthritis is becoming an increasingly common problem. Pain, loss of joint function and other negative affects make arthritis a major health problem. The most common form of arthritis, osteoarthritis, is caused by the "wear and tear" of articular cartilage on the surface of bones in synovial joints. It is a chronic problem that is slowed with different types of therapies, including pharmaceutical, nutritional and surgical, but to date the wearing down of the cartilage cannot be stopped or reversed. Normal, mature, articular cartilage does not spontaneously repair itself after an injury. In light of this, several surgical techniques are being developed to repair degenerate and/or osteoarthritic cartilage. One such approach uses Autologous Chondrocyte Implantation (ACI). Dr. Mats Brittberg, and associates at Goteborg University in Sweden began using this cartilage repair procedure in 1987. Other techniques attempt to stimulate the subchondral bone to generate cartilage, such as Abrasion Arthroplasty. Still others use tissue grafts to attempt to repair lesions in cartilage. The surface biomechanics of these repaired tissues have not yet been studied. How well does the repaired cartilage resist wear? How long will it last? How does the repaired cartilage compare to "normal" cartilage in terms of wear-resistance? It is the goal of this research to gain initial knowledge to help answer these questions. Dr. Brittberg has provided 17 sample of cartilage, from 9 Swedish patients, including repaired and normal pairs using the aforementioned repair techniques and others, as well as a degenerate and normal cartilage pair. The intention of this paper is to report the findings of experiments performed using these samples, and compare the wear-resistance of repaired and degenerate cartilage to that of normal cartilage. Wear and friction tests were carried out on 2 mm diameter specimens using a biotribology device and a new, modified technique developed specifically for these small samples. The cartilage samples were mounted, using specially designed adapters, in our biotribology device for oscillating contact against polished stainless steel disks at a constant applied normal load, oscillating frequency, and test time. A buffered saline solution was used as the lubricant. Cartilage wear was determined from hydroxyproline analysis of the test fluid and washings from the wear test. Thin layers of transferred cartilage-like films to the stainless steel disks were also analyzed. Also, friction data was recorded throughout the tests. The results of these experiments show that: 1) For the two pairs of ACI repaired cartilage, the repaired cartilage gave substantially less wear than that of normal cartilage. 2) For all other repair techniques tested, the repaired cartilage produced more wear than normal cartilage. 3) The single osteoarthritic cartilage tested produced similar wear to that of normal cartilage. This is surprising since the current thought is osteoarthritic cartilage is more susceptible to wear. 4) The hydroxyproline concentration, by weight, of cartilage increases after the wear test. 5) Friction levels were in the boundary lubrication regime, and had no correlation with the amount of wear. To our knowledge, this research represents the first controlled "in vitro" study of an important unknown in cartilage repair, i.e., the wear-resistance of the repaired cartilage. It shows that ACI produces a cartilage with very good wear-resistance, better than that of other repair techniques, and possibly better than normal, healthy cartilage. ACI and its applications to the treatment of degenerate and osteoarthritic joints are promising, and studies will continue to investigate this and other types of cartilage repair. / Master of Science
16

Rôle de l'épigénétique dans la régulation des collagènes dans les chondrocytes articulaires humains : nouveaux aspects pour la compréhension de l'homéostasie du cartilage / The role of epigenetics in the regulation of collagens in human articular chondrocytes : new insight for cartilage homeostasis

Durand, Anne-Laure 07 December 2017 (has links)
Le cartilage articulaire est un tissu avasculaire ayant une faible capacité de régénération. Ce tissu est essentiellement constitué d’un type cellulaire, les chondrocytes, inclus dans une matrice extracellulaire abondante et de composition très spécifique. L’arthrose, la maladie touchant le cartilage la plus fréquente, est caractérisée par la perte progressive de cette matrice extracellulaire, ce qui conduit à l’érosion des surfaces articulaires. Les causes sont multiples et encore mal comprises: inflammation, génétique, mécanique etc... Plusieurs études ont récemment mis en évidence l’implication des mécanismes épigénétiques dans la réponse des chondrocytes aux cytokines inflammatoires (contribuant au catabolisme du tissu).Notre but a été d’étudier le rôle encore peu exploré de ces mécanismes dans la synthèse de la matrice extracellulaire du cartilage (contribuant à l'anabolisme). En utilisant des chondrocytes articulaires humains en culture primaire, nous avons identifié des marques de méthylation de l'ADN étroitement associées à l’expression de gènes codant les principaux composants de la matrice cartilagineuse. Ceci apporte un nouvel éclairage sur l’instabilité du phénotype chondrocytaire. De plus, nous décrivons pour la première fois l'implication de la lysine déméthylase LSD1 (une enzyme modifiant l'état de la chromatine dont l’expression est augmentée dans le cartilage arthrosique), dans la régulation génique d'un collagène du cartilage, le collagène de type IX. L’ensemble des résultats met en évidence de nouveaux mécanismes de régulation génique dans les chondrocytes articulaires, qui pourraient être impliqués dans le développement de l’arthrose / The articular cartilage is an avascular tissue displaying a very limited regenerative capacity. This tissue is mainly composed of one cell type, the chondrocytes, which are embedded within an abundant and highly specialized extracellular matrix. Osteoarthritis, which is the most common joint disease, is characterized by the progressive loss of that matrix, leading to the erosion of articular surface. The causes of this pathology are multiple (genetic, biomechanical, inflammatory…) and are still not fully understood. Several studies have recently highlighted the involvement of epigenetic mechanisms in the chondrocyte response to inflammatory cytokines (contributing to cartilage catabolism).The aim of our work was to investigate the unexplored role of the epigenetic mechanisms in the ability of chondrocytes to synthesize the cartilage-specific matrix (contributing to cartilage anabolism). Using primary culture of human articular chondrocytes, we identified a DNA methylation profile closely associated with the expression of the genes encoding the main structural components of the extracellular matrix. These findings bring new insights in the comprehension of chondrocyte phenotype instability. Moreover, we report for the first time the involvement of the lysine demethylase LSD1, a chromatin-modifying enzyme highly expressed in osteoarthritic tissue, in the gene regulation of COL9A1, a cartilage-specific collagen. Altogether, these results highlight new mechanisms of gene regulation in articular chondrocytes, which may be involved in the development of osteoarthritis
17

Analyse à large échelle du profil d'expression des gènes dans des chondrocytes articulaires soumis à un stress mécanique de type étirement : la relaxine une nouvelle cible d'intérêt dans les pathologies ostéoarticulaires ? / Pas de titre traduit

El-Hayek, Elissar 15 November 2013 (has links)
Le cartilage articulaire est un tissu conjonctif spécialisé recouvrant les surfaces osseuses et assurant, avec d’autres tissus comme la membrane synoviale, le bon fonctionnement des articulations. Le cartilage est composé d'un type cellulaire, le chondrocyte, qui assure la synthèse et la dégradation d’une matrice extracellulaire essentielle à ses propriétés mécaniques. Les articulations, en conditions physiologique et pathologique, sont soumises à deux stress principaux agissant sur l’homéostasie du cartilage : le stress mécanique et le stress inflammatoire. Le premier objectif de ma thèse était d’étudier l’effet d’un stress mécanique de type étirement sur le profil d’expression des gènes dans des chondrocytes articulaires de lapin en culture primaire en utilisant une approche à grande échelle (micro‐arrays). Nous avons identifié 36 et 57 transcrits répertoriés dans le génome de lapin et dont les taux d’expression sont respectivement augmentés et diminués par un étirement équibiaxial cyclique (5%, 1Hz, 20h). Certains gènes sont connus pour leur implication dans l’inflammation, la mort cellulaire et la dégradation matricielle. Parmi eux, celui de la relaxine (RLN) était le gène le plus induit par l’étirement. La relaxine, hormone peptidique de la superfamille de l’insuline/relaxine, est connue pour son implication dans la reproduction et la grossesse. En revanche son rôle dans le cartilage articulaire restait à étudier. Le deuxième objectif de ma thèse était, par conséquent, de caractériser la fonction de la RLN dans le cartilage. Mes résultats de RT‐PCR quantitative montrent pour la première fois que la quantité des transcrits de la RLN est augmentée par le stress mécanique et le stress inflammatoire (traitement par l’interleukine‐1) dans des chondrocytes articulaires de lapin. De plus, la quantité des transcrits de la RLN est diminuée au cours de la dédifférenciation des chondrocytes. Dans un modèle de gonarthrose induite chez la souris par déstabilisation du ménisque médial, j’ai montré par immunofluorescence que la RLN est principalement présente au niveau des couches superficielles du cartilage de genou et que son expression diminue dans le cartilage arthrosique par rapport au cartilage normal. De plus, le traitement par de la RLN de chondrocytes de lapin augmente l’activité de la métalloprotéinase MMP‐9 impliquées dans la dégradation du cartilage. En conclusion, cette étude montre que la RLN est sensible aux stress mécanique et inflammatoire et la dédifférenciation des chondrocytes. Elle suggère que cette hormone pourrait moduler l’homéostasie du cartilage. La RLN est donc une cible potentielle d’intérêt dans les pathologies ostéoarticulaires. / The articular cartilage is a specialized conjunctive tissue covering bone surfaces. It ensures, together with other tissues like the synovial membrane, the right functioning of the articulations. The cartilage is formed of one cellular type, the chondrocyte, which is responsible for the synthesis and degradation of the extracellular matrix required for its mechanical properties. The joints, under physiological and pathological conditions, are subjected to two main types of stress that affect cartilage homeostasis: mechanical stress and inflammatory stress. The first objective of my PhD thesisis is to study the effect of stretching, one type of mechanical stress, on the gene expression profile in rabbit articular chondrocytes in culture using a large scale approach (micro‐arrays). 36 and 57 transcripts of the rabbit genome which are up‐regulated and down‐regulated by equibiaxial cyclic tensile stretching (5%, 1Hz, 20h) respectively were identified. Some of these genes are known for their implication in inflammation, cell death and matrix degradation. Among them, the relaxin (RLN) gene is the most induced by stretching. RLN is a peptide hormone that belongs to the insulin/relaxin superfamily. It is known for its implication in reproduction and pregnancy. However, the role of RLN in cartilage is still to be studied. The second objective of my PhD thesis is, consequently, to characterize the function of RLN in cartilage. My qRT‐PCR results show, for the first time, that the RLN transcript levels increase upon mechanical and inflammatory (interleukin ‐1treatment) stress in rabbit articular chondrocytes. Moreover, RLN transcript levels decrease during cell dedifferentiation. In a model of gonarthrosis induced in mice by destabilization of the medial meniscus, I showed by immunofluorescence that RLN is mainly present in the superficial layers of the knee cartilage and that its expression decreases in osteoarthritic cartilage as compared to normal cartilage. Furthermore, treatment of rabbit chondrocytes with RLN increases the activity of the metalloproteinase MMP‐9 involved in cartilage degradation. In conclusion, this study shows that RLN is sensitive to mechanical and inflammatory stress and to chondrocyte dedifferentiation. It also suggests that this hormone could modulate cartilage homeostasis. Therefore, RLN is a potential target in osteoarticular pathologies.
18

Tissue engineering techniques to regenerate articular cartilage using polymeric scaffolds

Pérez Olmedilla, Marcos 18 December 2015 (has links)
[EN] Articular cartilage is a tissue that consists of chondrocytes surrounded by a dense extracellular matrix (ECM). The ECM is mainly composed of type II collagen and proteoglycans. The main function of articular cartilage is to provide a lubricated surface for articulation. Articular cartilage damage is common and may lead to osteoarthritis. Articular cartilage does not have blood vessels, nerves or lymphatic vessels and therefore has limited capacity for intrinsic healing and repair. Tissue engineering (TE) is a powerful approach for healing degenerated cartilage. TE uses three-dimensional (3D) scaffolds as cellular culture supports. The scaffold provides a structure that facilitates chondrocyte adhesion and expansion while maintaining a chondrocytic phenotype and limiting dedifferentiation, which is a problem in two-dimensional (2D) systems. Cell attachment to the scaffolds depends on the physical and chemical characteristics of their surface (morphology, rigidity, equilibrium water content, surface tension, hydrophilicity, presence of electric charges). The primary aim of this thesis was to study the influence of different kinds of biomaterials on the response of chondrocytes to in vitro culture. 3D scaffold constructs must have an interconnected porous structure in order to allow cell development through the network, to maintain their differentiated function, as well as to allow the entry and exit of nutrients and metabolic waste removal. Therefore, the effect of the hydrophilicity and pore architecture of the scaffolds was studied. A series of polymer and copolymer networks with varying hydrophilicity was synthesised and biologically tested in monolayer culture. Cell viability, proliferation and aggrecan expression were quantified. When human chondrocytes were cultured on polymer substrates in which the hydrophilic groups were homogeneously distributed, adhesion, proliferation and viability decreased with the content of hydrophilic groups. Nevertheless, copolymers in which hydrophilic and hydrophobic domains alternate showed better results than the corresponding homopolymers. Biostable and biodegradable scaffolds with different hydrophilicity and porosity were synthesised using a template of sintered microspheres of controlled size. This technique allows the interconnectivity between pores and their size to be controlled. Periodic and regular pore architectures and reproducible structures were obtained. The mechanical behaviour of the porous samples was significantly different from that of the bulk material of the same composition. Cells fully colonised the scaffolds when the pores' size and their interconnection were sufficiently large. Another objective was to assess the chondrogenic redifferentiation in a biodegradable 3D scaffold of polycaprolactone (PCL) of human autologous chondrocytes previously expanded in monolayer. This study demonstrated that chondrocytes cultured in PCL scaffolds without fetal bovine serum (FBS) efficiently redifferentiated, expressing a chondrocytic phenotype characterised by their ability to synthesise cartilage-specific ECM proteins. The influence that pore connectivity and hydrophilicity of caprolactone-based scaffolds has on the chondrocyte adhesion to the pore walls, proliferation and composition of the ECM produced was studied. The number of cells inside polycaprolactone scaffolds increased as porosity was increased. A minimum of around 70% porosity was necessary for this scaffold architecture to allow seeding and viability of the cells within. The results suggested that some of the cells inside the scaffold adhered to the pore walls and kept the dedifferentiated phenotype, while others redifferentiated. In conclusion, the findings of this thesis provide valuable insight into the field of cartilage regeneration using TE techniques. The studies carried out shed light on the right composition, porosity and hydrophilicity of the scaffolds to be used for optimal cartilage production. / [ES] El cartílago articular es un tejido compuesto por condrocitos rodeados por una densa matriz extracelular (MEC). La MEC se compone principalmente de colágeno tipo II y de proteoglicanos. La función principal del cartílago articular es proporcionar una superficie lubricada para las articulaciones. Las lesiones en el cartílago articular son comunes y pueden derivar a osteoartritis. El cartílago articular no tiene vasos sanguíneos, nervios o vasos linfáticos y, por tanto, tiene una capacidad limitada de auto-reparación. La ingeniería tisular (IT) es un área prometedora en la regeneración de cartílago. En la IT se utilizan "andamiajes" (scaffolds) tridimensionales (3D) como soportes para el cultivo celular y tisular. Los scaffolds proporcionan una estructura que facilita la adhesión y la expansión de los condrocitos, manteniendo un fenotipo condrocítico limitando su desdiferenciación; que es el mayor problema en los sistemas bidimensionales (2D). La adhesión celular a los scaffolds depende de las características físicas y químicas de su superficie (morfología, rigidez, contenido de agua en equilibrio, tensión superficial, hidrofilicidad, presencia de cargas eléctricas). El objetivo general de esta tesis fue estudiar la influencia de diferentes tipos de biomateriales en la respuesta de los condrocitos en cultivo in vitro. Los scaffolds deben tener una estructura porosa interconectada para permitir el desarrollo celular a través de toda la estructura 3D, potenciando que los condrocitos mantengan su fenotipo, así como permitiendo entrada de nutrientes y eliminación de desechos metabólicos. Se estudió el efecto de la hidrofilicidad y de la arquitectura de poro. Se cuantificó la viabilidad celular, la proliferación y la expresión de agrecano. Cuando los condrocitos humanos se cultivaron en sustratos poliméricos donde los grupos hidrófilos se distribuyeron de manera homogénea, la adhesión, la proliferación y la viabilidad disminuyó con el contenido de grupos hidrófilo. Sin embargo, los copolímeros en los que los dominios hidrófilos e hidrófobos se alternaban mostraron mejores resultados que los homopolímeros correspondientes. Se sintetizaron series de scaffolds bioestables y series biodegradables con diferente hidrofilicidad y porosidad utilizando plantillas de microesferas sinterizadas. Se obtuvieron arquitecturas de poros regulares y reproducibles. Las células colonizaron el scaffold en su totalidad cuando los poros y la interconexión entre ellos era lo suficientemente grande. Se evaluó la rediferenciación condrogénica de condrocitos autólogos humanos, previamente expandidos en monocapa, sembrados en un scaffold biodegradable de policaprolactona (PCL). Se demostró que los condrocitos cultivados en scaffolds de PCL con medio sin suero bovino fetal (FBS), se rediferenciaban de manera eficiente; expresando un fenotipo condrocítico, caracterizado por su capacidad de sintetizar proteínas de la MEC específicas de cartílago hialino. Se estudió la influencia de la hidrofilicidad y la conectividad de los poros de los scaffolds de caprolactona sobre la adhesión de los condrocitos a las paredes de los poros, su capacidad proliferativa y la composición de MEC sintetizada. Se observó que un mínimo de 70% de porosidad era necesario para permitir la siembra de los condrocitos en el scaffold y su posterior viabilidad. El número de células aumentaba a medida que aumentaba la porosidad del scaffold. Los resultados sugieren que parte de las células que se adherían a las paredes internas de los poros mantenían el fenotipo desdiferenciado de condrocitos cultivados en monocapa, mientras que otros se rediferenciaban. En conclusión, los resultados de esta tesis aportan un avance en el campo de la regeneración de cartílago articular utilizando técnicas de IT. Los estudios realizados proporcionan directrices sobre la composición, la porosidad y la hidrofilicidad más adecuada para l / [CA] El cartílag articular és un teixit format per condròcits envoltats per una densa matriu extracel·lular (MEC). La MEC es compon principalment de col·lagen tipus II i de proteoglicans. La funció principal del cartílag articular és proporcionar una superfície lubricada a les articulacions. Les lesions en el cartílag articular són comuns i poden derivar en osteoartritis. El cartílag articular no té vasos sanguinis, nervis ni vasos limfàtics i, per tant, té una capacitat limitada d'auto-reparació. L'enginyeria tissular (IT) és una àrea prometedora en la regeneració del cartílag. A la IT s'utilitzen "bastiments" (scaffolds) tridimensionals (3D) com a suports per al cultiu cel·lular i tissular. Els scaffolds proporcionen una estructura que facilita l'adhesió i l'expansió dels condròcits, mantenint un fenotip condrocític limitant la seua desdiferenciació; que és el major problema en els sistemes bidimensionals (2D). L'adhesió cel·lular als scaffolds depèn de les característiques físiques i químiques de la superfície (morfologia, rigidesa, contingut d'aigua en equilibri, tensió superficial, hidrofilicitat i presència de càrregues elèctriques). L'objectiu general d'aquesta tesi va ser estudiar la influència de diferents tipus de biomaterials en la resposta dels condròcits en cultiu in vitro. Els scaffolds han de tindre una estructura porosa interconnectada per a permetre el desenvolupament cel·lular a través de tota l'estructura 3D, potenciant que els condròcits mantinguen el seu fenotip així com permetent l'entrada de nutrients i l'eliminació de productes metabòlics. S'ha estudiat l'efecte de la hidrofilicitat i de l'arquitectura de porus dels scaffolds. Es va quantificar la viabilitat cel·lular, la proliferació i l'expressió de agrecà. Quan els condròcits humans es van cultivar en substrats polimèrics en els quals els grups hidròfils es van distribuir de manera homogènia, l'adhesió, la proliferació i la viabilitat van disminuir amb el contingut de grups hidròfils. No obstant això, els copolímers en els quals els dominis hidròfils i hidròfobs s'alternaven van mostrar millors resultats que els homopolímers corresponents. Es van sintetitzar sèries de scaffolds bioestables i sèries biodegradables amb diferent hidrofilicitat i porositat utilitzant plantilles de microesferes sinteritzades. Es van obtindre arquitectures de porus regulars i reproduïbles. Les cèl·lules van colonitzar el scaffold en la seua totalitat quan els porus i la interconnexió entre ells era suficientment gran. Es van avaluar la rediferenciació condrogènica de condròcits autòlegs humans, prèviament expandits en monocapa, en un scaffold biodegradable de policaprolactona (PCL). Es va demostrar que els condròcits cultivats en scaffolds de PCL sense sèrum boví fetal (FBS) es rediferenciaven de manera eficient, expressant un fenotip condrocític caracteritzat per la seua capacitat de sintetitzar proteïnes de la MEC específiques de cartílag hialí. També es va estudiar la influència de la hidrofilicitat i la connectivitat dels porus dels scaffolds de caprolactona sobre l'adhesió dels condròcits a les parets dels porus, la seua capacitat proliferativa i la composició de MEC sintetitzada. Es va observar que un mínim del 70% de porositat sembla ser necessari per permetre la sembra dels condròcits i la seua posterior viabilitat en el scaffold. El nombre de cèl·lules augmentava a mesura que augmentava la porositat del scaffold. Els resultats suggereixen que part de les cèl·lules que s'adherien a les parets internes dels porus mantenien el fenotip desdiferenciat de condròcits cultivats en monocapa, mentre que altres es rediferenciaven. En conclusió, els resultats d'aquesta tesi proporcionen informació valuosa en el camp de la regeneració de cartílag utilitzant tècniques d'IT. Els estudis realitzats proporcionen directrius sobre la composició, la porositat i la hidrofilicitat m / Pérez Olmedilla, M. (2015). Tissue engineering techniques to regenerate articular cartilage using polymeric scaffolds [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58987
19

Implication du miR-24 et du miR-199a-5p dans le vieillissement prématuré du chondrocyte au cours de l'arthrose / Implication of miR-24 et du miR-199a-5p in cartilage premature aging during osteoarthritis

Philipot, Didier 07 December 2012 (has links)
L'arthrose tardive est la plus répandue des maladies ostéo-articulaires dont la prévalence augmente avec l'âge. Dans le cartilage arthrosique, des changements spécifiques des chondrocytes s'opèrent. Ils présentent une diminution de leur propriété de synthèse de la matrice extracellulaire, une diminution de leur réponse aux facteurs de croissance anabolisants et une augmentation de la sénescence cellulaire. Elle est caractérisée par un arrêt irréversible du cycle cellulaire, une érosion des télomères, une activation de la voie de dommages à l'ADN (ATM/p53/p21), une activation de la voie p16INK4a/pRb, l'établissement d'un sécrétome associé à un phénotype sénescent/hypertrophique appelé SAPS. Le sujet de ma thèse porte sur l'identification de microARNs impliqués dans le vieillissement prématuré du chondrocyte. Les microARNs (miRs) sont des petits ARNs non codant endogènes qui contrôlent un certain nombre de fonctions biologiques comme la prolifération, la différenciation ou la sénescence. Deux études ont montré le rôle préventif des miRs dans l'induction de la sénescence et dans l'hypertrophie. Au cours de ma thèse, nous avons utilisé un modèle de chondrocytes arthrosiques en 3D traités à l'IL-1β afin de récapituler le phénotype sénescent observé dans la pathologie. Cela nous a permit d'identifier deux miRs réprimés en réponse à cette cytokine : miR-24 et miR-199a-5p. Nous montrons que la répression de miR-24 conduit à une induction de p16INK4a et MMP1 associé à un phénotype hypertrophique. De plus, nos données préliminaires montrent que le miR-199a-5p est potentiellement un régulateur négatif de l'hormone anti-vieillissement Klotho qui est retrouvée dérégulée dans notre modèle cellulaire / Osteoarthritis (OA) is an age-related disease whose prevalence increases with late life. In osteoarthritic cartilage, chondrocytes presents age-specific changes such as a decrease in synthesis properties, a decrease in their response to growth and anabolic factors and an increase of cellular senescence. Senescent chondrocytes are characterized by an irreversible cell cycle arrest, DNA damage response activation (ATM/p53/p21), p16INK4a/pRb signaling pathway activation and the establishment of SAPS triggering to hypertrophy. The aim of my PhD project consisting to identify microRNAs involved in chondrocyte premature aging. microRNAs are small endogenous RNAs controlling several biological processes such as proliferation, differentiation and senescence. Two studies show that microRNAs have a preventive role in senescence and hypertrophy. During my PhD, we perform a cellular model based on OA chondrocytes placed in 3D and treated with IL-1β. We identified two miRs: miR-24 and miR-199a-5p. Repression of miR-24 leads to the induction of p16INK4a and MMP1, associated with chondrocyte hypertrophy. Moreover, preliminary datas suggests that miR-199a-5p is a potential regulator of anti-aging hormone Klotho which is deregulated in our model.
20

Deficiency in FAM20A leads to skeletal and dental defects – a study in FAM20A knockout mice

Alamoudi, Ahmed 25 October 2017 (has links)
Family with sequence similarity 20 (FAM20) consists of three members: FAM20A, FAM20B and FAM20C. Mutations in FAM20 family have been linked to developmental disorders involving bones, cartilage and teeth. FAM20A mutations in humans are associated with amelogenesis imperfecta with gingival fibromatosis and enamel renal syndrome. Fam20a knockout (KO) mouse showed growth retardation. The aim of this study was to characterize the skeletal and dental phenotypes using Fam20a KO mouse. Our results showed that body size and bone length of KO mice were smaller than those of WT. The microcomputed tomography (μCT) analyses of trabecular and cortical bones in KO displayed lower bone volume, thinner trabeculae and thinner bone cortex as compared to WT. Histological examination of KO growth plate demonstrated disorganized chondrocyte zones and extended hypertrophic zone. qRT-PCR results showed downregulation of several osteoblast differentiation markers in KO long bone. Immunohistochemical examination demonstrated reduced chondrocyte proliferation, apoptosis and increased collagen X expression in KO growth plate. Our data showed a lower number of osteoblasts and osteoclasts in KO as compared to WT. In vitro study, Fam20a KO showed a lower number of bone marrow stromal cells and osteoprogenitors. In vitro mineralization was impaired in KO osteoblasts. Fam20a KO had hypoplastic enamel, delayed tooth eruption and gingival overgrowth. The µCT results demonstrated that enamel in Fam20a KO was not fully mineralized and enamel matrix was detached from dentin. Scanning electron microscopy displayed absence of decussation patterns in Fam20a KO enamel. Histological examination of maxillary first molar at differentiation stage showed no difference between WT and KO. At the secretory stage, Fam20a KO ameloblasts were short and non-polarized as compared to WT. Immunohistochemical analysis showed diffuse staining pattern of amelogenin in Fam20a KO first molar compared to WT. Western blot analysis demonstrated that amelogenin proteolytic process was impaired in KO and showed slower migration pattern of MMP20. In conclusion, endochondral ossification defects and reduced number of osteoblasts and their precursors led to the bone phenotype in Fam20a KO. Amelogenin processing defects caused amelogenesis imperfecta phenotype in KO. Our study indicated that Fam20a plays a role in skeletal development and amelogenesis.

Page generated in 0.0266 seconds