• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 466
  • 51
  • 49
  • 21
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 11
  • 8
  • 6
  • 4
  • 3
  • Tagged with
  • 731
  • 117
  • 89
  • 87
  • 86
  • 83
  • 75
  • 74
  • 73
  • 67
  • 65
  • 64
  • 64
  • 57
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Factors influencing the structures of the Monterey Bay sea breeze /

Duvall, Emily M. January 2004 (has links) (PDF)
Thesis (M.S. in Meteorology and Physical Oceanography)--Naval Postgraduate School, March 2004. / Thesis advisor(s): Wendell A. Nuss. Includes bibliographical references (p. 59-60). Also available online.
272

Galactic structure, near and far /

Rest, Armin. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (p. 301-311).
273

ENSO-related marine cloud variation and new single column marine boundary layer cloud modeling /

Park, Sungsu, January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (p. 219-228).
274

Exploring the limits of star formation from the extreme environment of galaxy interactions to the Milky Way

Heiderman, Amanda Lea 29 January 2013 (has links)
In this thesis, I explore the rate at which molecular gas is converted to stars through detailed studies of a sample of molecular clouds in the Milky Way, IFU spatially resolved observations of gas-rich nearby interacting galaxies, as well as the environmental dependence of star formation and galaxy morphology in a galaxy supercluster. This thesis is composed of three individual projects that investigate nearby star formation within the local 500 pc of our Sun, to neighboring extreme star forming environments of interacting starburst galaxies, and finally studying how star formation varies with galaxy morphology in a galaxy supercluster a z~0.165. I discuss the relation between the star formation rate (SFR) and molecular gas surface densities (e.g., Schmidt-Kennicutt relation) in Galactic star forming regions and find there is a discrepancy between my study and extragalactic relations. The discrepancy is attributed to extragalactic measurements that are averaged over large >kpc scales and include star forming molecular gas (above some threshold) and molecular gas the is not dense enough to form stars. I find a steep increase in the Galactic SFR-gas surface density relation indicative of a threshold for efficient star formation that is best fit to a broken power law with a linear slope above 129 Msun pc⁻². I introduce the VIRUS-P Investigation of the eXtreme ENviroments of Starbursts (VIXENS) project which is a survey of interacting is a large integral field unit survey of nearby infrared bright (L_IR>3x10¹⁰ Lsun) interacting/starburst galaxies. The main goal of VIXENS is to investigate the relation between star formation and gas content on spatially resolved scales of ~0.1-1 kpc in the extreme star forming environments of interacting/starburst galaxies. The VIXENS sample is composed of systems in a range interaction stages with morphological signatures from early phase (close pairs) to late stage mergers (single system with multiple nuclei), SFRs, and gas surface densities. I highlight the first results from the VIXENS survey in the late interaction phase galaxy merger Arp 299. I find 1.3 kpc regions in Arp 299 to lie along the SFR-gas surface density relation found for mergers at high redshift, but this relation is highly dependent on the CO to molecular hydrogen (H₂) conversion factor. I find evidence for a Galactic CO-to-H₂ conversion factor using metallicity and dust temperature measurements, which would place 1.3 kpc regions in the Arp 299 merger in between the high redshift and Kennicutt-Schmidt relations. Comparing the SFR to dense gas surface densities as traced by HCN and HCO⁺, I find an agreement between the spatially resolved measurements and that found on global scales in spirals and (ultra)luminous infrared galaxies. Finally, I present an investigation of the influence of environment on frequency, distribution, color, and star formation properties of galaxy mergers and non-interacting galaxies in the Abell 901/902 supercluster at z~0.165. I find galaxy mergers be preferentially blue in color and have an enhanced SFR by a factor of ~2 compared to non-interacting galaxies. This result may be due to a decrease in galaxy velocity dispersion in the cluster outskirt, favoring galaxy-galaxy interactions, or to interacting galaxies that are part of groups or field galaxies being accreted along cosmological filaments by the clusters. I compare to N-body simulations of groups and field galaxies accreting onto the clusters and find the fraction of mergers are similar to that predicated at group overdensities. I find the SFR of galaxies in the supercluster to be depressed compared to field galaxies in both the core and cluster outskirts, suggesting that an environmental process such as ram pressure stripping is effective throughout the cluster. The results of a modest SFR enhancement and a low merger fraction culminate in my finding that mergers contribute only a small fraction (between 10% and 15%) of the total SFR density of the Abell 901/902 clusters. / text
275

Evaluating the “critical relative humidity” as a measure of subgrid-scale variability of humidity in general circulation model cloud cover parameterizations using satellite data

Quaas, Johannes 21 August 2015 (has links) (PDF)
A simple way to diagnose fractional cloud cover in general circulation models is to relate it to the simulated relative humidity, and allowing for fractional cloud cover above a “critical relative humidity” of less than 100%. In the formulation chosen here, this is equivalent to assuming a uniform “top-hat” distribution of subgrid-scale total water content with a variance related to saturation. Critical relative humidity has frequently been treated as a “tunable” constant, yet it is an observable. Here, this parameter, and its spatial distribution, is examined from Atmospheric Infrared Sounder (AIRS) satellite retrievals, and from a combination of relative humidity from the ECMWF Re-Analyses (ERA-Interim) and cloud fraction obtained from CALIPSO lidar satellite data. These observational data are used to evaluate results from different simulations with the ECHAM general circulation model (GCM). In sensitivity studies, a cloud feedback parameter is analyzed from simulations applying the original parameter choice, and applying parameter choices guided by the satellite data. Model sensitivity studies applying parameters adjusted to match the observations show larger positive cloud-climate feedbacks, increasing by up to 30% compared to the standard simulation.
276

A search for large-scale effects of ship emissions on clouds and radiation in satellite data

Peters, Karsten, Quaas, Johannes, Graßl, Helmut 21 August 2015 (has links) (PDF)
Ship tracks are regarded as the most obvious manifestations of the effect of anthropogenic aerosol particles on clouds (indirect effect). However, it is not yet fully quantified whether there are climatically relevant effects on large scales beyond the narrow ship tracks visible in selected satellite images. A combination of satellite and reanalysis data is used here to analyze regions in which major shipping lanes cut through otherwise pristine marine environments in subtropical and tropical oceans. We expect the region downwind of a shipping lane is affected by the aerosol produced by shipping emissions but not the one upwind. Thus, differences in microphysical and macrophysical cloud properties are analyzed statistically. We investigate microphysical and macrophysical cloud properties as well as the aerosol optical depth and its fine-mode fraction for the years 2005–2007 as provided for by retrievals of the two Moderate Resolution Imaging Spectroradiometer instruments. Water-cloud properties include cloud optical depth, cloud droplet effective radius, cloud top temperature, and cloud top pressure. Large-scale meteorological parameters are taken from ERA-Interim reanalysis data and microwave remote sensing (sea surface temperature). We analyze the regions of interest in a Eulerian and Lagrangian sense, i.e., sampling along shipping lanes and sampling along wind trajectories, respectively. No statistically significant impacts of shipping emissions on large-scale cloud fields could be found in any of the selected regions close to major shipping lanes. In conclusion, the net indirect effects of aerosols from ship emissions are not large enough to be distinguishable from the natural dynamics controlling cloud presence and formation.
277

Geographically versus dynamically defined boundary layer cloud regimes and their use to evaluate general circulation model cloud parameterizations

Nam, Christine C. W., Quaas, Johannes 25 August 2015 (has links) (PDF)
Regimes of tropical low-level clouds are commonly identified according to large-scale subsidence and lower tropospheric stability (LTS). This definition alone is insufficient for the distinction between regimes and limits the comparison of low-level clouds from CloudSat radar observations and the ECHAM5 GCM run with the COSP radar simulator. Comparisons of CloudSat radar cloud altitude-reflectivity histograms for stratocumulus and shallow cumulus regimes, as defined above, show nearly identical reflectivity profiles, because the distinction between the two regimes is dependent upon atmospheric stability below 700 hPa and observations above 1.5 km. Regional subsets, near California and Hawaii, for example, have large differences in reflectivity profiles than the dynamically defined domain; indicating different reflectivity profiles exist under a given large-scale environment. Regional subsets are better for the evaluation of low-level clouds in CloudSat and ECHAM5 as there is less contamination between 2.5 km and 7.5 km from precipitating hydrometeors which obscured cloud reflectivities.
278

CHASER

Rennó, Nilton O., Williams, Earle, Rosenfeld, Daniel, Fischer, David G., Fischer, Jürgen, Kremic, Tibor, Agrawal, Arun, Andreae, Meinrat O., Bierbaum, Rosina, Blakeslee, Richard, Boerner, Anko, Bowles, Neil, Christian, Hugh, Cox, Ann, Dunion, Jason, Horvath, Akos, Huang, Xianglei, Khain, Alexander, Kinne, Stefan, Lemos, Maria C., Penner, Joyce E., Pöschl, Ulrich, Quaas, Johannes, Seran, Elena, Stevens, Bjorn, Walati, Thomas, Wagner, Thomas 26 August 2015 (has links) (PDF)
The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. Knowledge of these interactions is foundational to our understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey (NRC 2007) indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) satellite mission concept responds to the IPCC and Decadal Survey concerns by studying the activation of CCN and their interactions with clouds and storms. The CHASER satellite mission was developed to remotely sense quantities necessary for determining the interactions of aerosols with clouds and storms. The links between the Decadal Survey recommendations and the CHASER goals, science objectives, measurements, and instruments are described in Table 1. Measurements by current satellites allow a rough determination of profiles of cloud particle size but not of the activated CCN that seed them. CHASER will use an innovative technique (Freud et al. 2011; Freud and Rosenfeld 2012; Rosenfeld et al. 2012) and high-heritage (flown in a previous spaceflight mission) instruments to produce satellite-based remotely sensed observations of activated CCN and the properties of the clouds associated with them. CHASER will estimate updraft velocities at cloud base to calculate the number density of activated CCN as a function of the water vapor supersaturation. CHASER will determine the CCN concentration and cloud thermodynamic forcing (i.e., forcing caused by changes in the temperature and humidity of the boundary layer air) simultaneously, allowing their effects to be distinguished. Changes in the behavior of a group of weather systems in which only one of the quantities varies (a partial derivative of the intensity of the weather system with respect to the desirable quantity) will allow the determination of each effect statistically.
279

Correcting orbital drift signal in the time series of AVHRR derived convective cloud fraction using rotated empirical orthogonal function

Devasthale, Abhay, Karlsson, Karl-Göran, Quaas, Johannes, Graßl, Hartmut 26 August 2015 (has links) (PDF)
The Advanced Very High Resolution Radiometer (AVHRR) instruments onboard the series of National Oceanic and Atmospheric Administration (NOAA) satellites offer the longest available meteorological data records from space. These satellites have drifted in orbit resulting in shifts in the local time sampling during the life span of the sensors onboard. Depending upon the amplitude of the diurnal cycle of the geophysical parameters derived, orbital drift may cause spurious trends in their time series. We investigate tropical deep convective clouds, which show pronounced diurnal cycle amplitude, to estimate an upper bound of the impact of orbital drift on their time series. We carry out a rotated empirical orthogonal function analysis (REOF) and show that the REOFs are useful in delineating orbital drift signal and, more importantly, in subtracting this signal in the time series of convective cloud amount. These results will help facilitate the derivation of homogenized data series of cloud amount from NOAA satellite sensors and ultimately analyzing trends from them. However, we suggest detailed comparison of various methods and rigorous testing thereof applying final orbital drift corrections.
280

Aerosol indirect effects from shipping emissions

Peters, Karsten, Stier, Philip, Quaas, Johannes, Graßl, Hartmut 26 August 2015 (has links) (PDF)
In this study, we employ the global aerosol-climate model ECHAM-HAM to globally assess aerosol indirect effects (AIEs) resulting from shipping emissions of aerosols and aerosol precursor gases. We implement shipping emissions of sulphur dioxide (SO2), black carbon (BC) and particulate organic matter (POM) for the year 2000 into the model and quantify the model’s sensitivity towards uncertainties associated with the emission parameterisation as well as with the shipping emissions themselves. Sensitivity experiments are designed to investigate (i) the uncertainty in the size distribution of emitted particles, (ii) the uncertainty associated with the total amount of emissions, and (iii) the impact of reducing carbonaceous emissions from ships. We use the results from one sensitivity experiment for a detailed discussion of shipping-induced changes in the global aerosol system as well as the resulting impact on cloud properties. From all sensitivity experiments, we find AIEs from shipping emissions to range from −0.32±0.01Wm−2 to −0.07±0.01Wm−2 (global mean value and inter-annual variability as a standard deviation). The magnitude of the AIEs depends much more on the assumed emission size distribution and subsequent aerosol microphysical interactions than on the magnitude of the emissions themselves. It is important to note that although the strongest estimate of AIEs from shipping emissions in this study is relatively large, still much larger estimates have been reported in the literature before on the basis of modelling studies. We find that omitting just carbonaceous particle emissions from ships favours new particle formation in the boundary layer. These newly formed particles contribute just about as much to the CCN budget as the carbonaceous particles would, leaving the globally averaged AIEs nearly unaltered compared to a simulation including carbonaceous particle emissions from ships.

Page generated in 0.0322 seconds