• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 466
  • 51
  • 49
  • 21
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 11
  • 8
  • 6
  • 4
  • 3
  • Tagged with
  • 731
  • 117
  • 89
  • 87
  • 86
  • 83
  • 75
  • 74
  • 73
  • 67
  • 65
  • 64
  • 64
  • 57
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

A complex signal to noise problem : determining the aerosol indirect effect from observations of ship tracks in AVHRR data

Walsh, Christopher D. 23 May 2002 (has links)
Cloud reflectivity is a function of cloud liquid water content and droplet number concentration. Since cloud droplets form around pre-existing aerosol particles, cloud droplet number concentration depends on the availability of particles that can serve as cloud condensation nuclei. Given constant liquid water amount, increased availability of cloud condensation nuclei leads to clouds with a greater droplet number concentration, greater total droplet surface area and consequently, greater reflectivity. The change in cloud reflectivity resulting from the increased availability of condensation nuclei is known as the aerosol indirect effect. The aerosol indirect effect ranks as one of the largest sources of uncertainty in current estimates of global climate change, largely due to difficulties in measurement. Changes in cloud reflectivity resulting from the aerosol indirect effect are typically much smaller than the natural background variability observed in clouds. As a result, the modification signal is very difficult to detect against the background noise. Additionally, since atmospheric aerosols are ubiquitous, it is difficult to find polluted and nonpolluted clouds that are sufficiently alike for reasonable comparison. However, ship tracks seen in satellite images present one opportunity to study the aerosol indirect effect in relative isolation. Ship tracks are regions of enhanced reflectivity in marine stratus, resulting from the addition of aerosols from ship exhaust plumes to preexisting clouds. Ship tracks are a common feature of satellite images of the North Pacific. Since the marine atmosphere has comparatively low background aerosol concentrations, the addition of ship exhaust particles can lead to distinct increases in cloud reflectivity. Ship tracks allow for sampling of polluted and nonpolluted clouds from adjacent regions with similar solar and viewing geometry, cloud temperatures and surface properties, and consequently provide a unique opportunity to study the effects of aerosol modification of cloud reflectivity. Using satellite images of the North Pacific in July 1999, over 1000 ship tracks were identified, logged and analyzed, yielding 504 sets of radiance data matching polluted clouds with nearby nonpolluted clouds. It was expected that increasing the size of the region for selection of nonpolluted clouds would increase the variability in observed reflectivity, and make detection of the modification signal more difficult. In order to study this potential effect of domain size for selection of nonpolluted clouds on measurements of the aerosol indirect effect, three data sets were collected, using domain sizes for selection of nonpolluted clouds of 15, 50 and 100 km. Analysis of retrieved optical depth and droplet effective radius for modified and control pixels shows evidence of a 1-5% increase in visible optical depth of marine stratus following modification by addition of ship exhaust particles, but unexpectedly, shows only slight increases in uncertainty with increasing domain size. A subsequent study revealed that autocorrelation lengths of radiances and retrieved cloud properties were only 8-15 km. This indicates that even the 15 km control domain captured much of the background variability present. Domain sizes smaller than 15 km are difficult to sample automatically while avoiding the inclusion of polluted clouds in the nonpolluted cloud sample. As a result, it remains necessary to analyze large numbers of ship tracks to separate the aerosol modification signal from the background variability. / Graduation date: 2003
412

The warm-hot environment of the Milky Way

Williams, Rik Jackson, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 134-137).
413

Managing Applications and Data in Distributed Computing Infrastructures

Toor, Salman Zubair January 2012 (has links)
During the last decades the demand for large-scale computational and storage resources in science has increased dramatically. New computational infrastructures enable scientists to enter a new mode of science, e-science, which complements traditional theory and experiments. E-science is inherently interdisciplinary, involving researchers from several disciplines, and also opens up for large-scale collaborative efforts where physically distributed groups of scientists share software tools and data to make scientific progress. Within the field of e-science, new challenges are emerging in managing large-scale distributed computing efforts and distributed data sets. Different models, e.g. grids and clouds, have been introduced over the years, but new solutions built on these models are needed to enable easy and flexible use of distributed computing infrastructures by application scientists. In the first part of the thesis, application execution environments are studied. The goal is to hide technical details of the underlying distributed computing infrastructure and expose secure and user-friendly environments to the end users. First, a general-purpose solution using portal technology is described, enabling transparent and easy usage of a variety of grid systems. Then a problem-solving environment for genetic analysis is presented. Here the statistical software R is used as a workflow engine, enhanced with grid-enabled routines for performing the computationally demanding parts of the analysis. Finally, the issue of resource allocation in grid system is briefly studied and certain modifications in the distributed resource-brokering model for the ARC middleware are proposed. The second part of the thesis presents solutions for managing and analyzing scientific data using distributed storage resources. First, a new reliable and secure file-oriented distributed storage system, Chelonia, is presented. The architectural design of the system is described and implementation issues are considered. Also, the stability and scalable performance of Chelonia is verified using several test scenarios. Then, tools for providing an efficient and easy-to-use platform for data analysis built on Chelonia are presented. Here, a database driven approach is explored. An extended architecture where Chelonia is combined with the Web-Service MEDiator (WSMED) system is implemented, providing web service tools to query data without any further programming. This approach is then developed further and Chelonia is combined with SciSPARQL, a query language that extends SPARQL to queries over numeric scientific data. This results in a system that is capable of interactive analysis of distributed data sets. Writing customized modules in Java, Python or C can fulfill advanced application-specific analysis requirements. The viability of the approach is demonstrated by applying the system to data produced by URDME, a computational environment in systems biology and results for sample queries expressed in SciSPARQL are presented. Finally, the use of an open source storage cloud, Openstack – SWIFT, for analysis of data from CERN experiments is considered. Here, a pilot implementation for the ROOT data analysis framework is presented together with a performance evaluation. / eSSENCE
414

Atmospheric Production and Transport of Cosmogenic 7Be and 10Be

Kulan, Abdulhadi January 2007 (has links)
This thesis deals with the atmospheric distribution of the cosmogenic isotopes 7Be (half-life 53 days) and 10Be (half-life 1.51 million years) as well as the anthropogenic isotope 137Cs (half-life 30 years) in aerosols and precipitation. Samples covering continuous or selected parts of the period 1972-2005 in Sweden and Europe are evaluated with respect to production, air mass transport and fallout processes. Such information is valuable in assessing the potential of these isotopes as indicators of air mass mixing and solar modulation factors that affect climate change. The results of 7Be and 10Be show seasonal variability and an 11-year cyclic pattern which is anti-correlated with the solar activity. Variations in seasonal trends of 7Be and 137Cs in aerosols during the post- and pre-Chernobyl period reflect tropospheric influence from 137Cs-heavily contaminated regions. A clear latitude dependence is observed in our beryllium isotope data where highest fallout is found in mid-latitudes compared to high and low latitude regions in the Northern hemisphere. This pattern reflects the general air mass circulation in the troposphere. However, stratospheric air mass influence was also identified in mainly single events and through tropopause folding during spring-summer seasons. The ratio of 10Be/7Be is used to estimate effects of air mass transport on production signal. The results show ratios between 1 and 3, much higher than the theoretically predicted value (0.6) in the atmosphere, which suggests contribution from 7Be-depleted (old) air masses. The relationship between monthly 7Be atmospheric activity and Total Fractional Cloud Cover (TFCC), collected from satellite imagery, over Sweden for the years (1991-2000) indicates a negative seasonal correlation. This observation can be related to depletion of aerosol from the atmosphere due to trapping in clouds.
415

Rocket-borne in situ measurements in the middle atmosphere

Hedin, Jonas January 2009 (has links)
The Earth's mesosphere and lower thermosphere in the altitude range 50-130 km is a fascinating part of our atmosphere. Complex interactions between radiative, dynamical, microphysical and chemical processes give rise to several prominent phenomena, many of those centred around the mesopause region (80-100 km). These phenomena include noctilucent clouds, polar mesosphere summer echoes, the ablation and transformation of meteoric material, and the Earth’s airglow. Strong stratification and small scale interactions are common features of both these phenomena and the mesopause region in general. In order to study interactions on the relevant spatial scales, in situ measurements from sounding rockets are essential for mesospheric research. This thesis presents new measurement techniques and analysis methods for sounding rockets, thus helping to improve our understanding of this remote part of the atmosphere. Considering the need to perform measurements at typical rocket speeds of 1 km/s, particular challenges arise both from the design of selective, sensitive, well-calibrated instruments and from perturbations due to aerodynamic influences. This thesis includes a quantitative aerodynamic analysis of impact and sampling techniques for meteoric particles, revealing a distinct size discrimination due to the particle flow. Optical techniques are investigated for mesospheric ice particle populations, resulting in instrument concepts for accessing smaller particles based on Mie scattering at short ultraviolet wavelengths. Rocket-borne resonance fluorescence measurements of atomic oxygen are critically re-assessed, leading to new calibration concepts based on photometry of O2 airglow emissions. The work presented here also provides important pre-studies for the upcoming PHOCUS rocket campaign from Esrange in July 2010. PHOCUS will address the interaction between three major mesospheric players: meteoric smoke, noctilucent clouds and gas-phase chemistry.
416

Interpreting thermodenuder data with an optimizing instrument model

Hite, James Ricky 14 November 2012 (has links)
Secondary organic aerosol (SOA) generated through the partitioning of gas phase volatile organic carbon compounds (VOCs) into the condensed phase has both epidemiological and climatic impacts through the growth of particulate matter into relevant sizes for respiratory interactions and cloud condensation nuclei activity. Considering the complex chemistry involved with VOC oxidation and subsequent formation of SOA, bulk properties like oxidation state, often represented by O:C ratio, and volatility are used to simplify the representation of SOA in chemical transport models (CTMs) and the like [e.g. Tsimpidi et al. 2010]. This preference for bulk properties is supported by the availability of ambient measurement techniques to constrain model parameters and scenarios. The volatility of SOA is often described by treating it as a mixture of components with differing partitioning coefficients through the volatility basis set (VBS) approach rather than explicitly resolving the complex chemistry [Donahue et al., 2006]. This study presents a method of determining the volatility of an aerosol sample through the use of an optimizing thermodenuder (TD) instrument model that is used to fit laboratory data. Data collected using a volatility tandem differential mobility analyzer (VTDMA) setup consist of inlet and outlet particle size and number concentrations for select dicarboxylic acids - compounds known to contribute to atmospheric SOA. These are interpreted by the model through an iterative optimization routine to obtain estimates of volatility parameters (e.g. saturation concentrations) which are compared to available literature data. The instrument model is currently divided into two decoupled modules. The first resolves the flow field characteristics, obtaining the temperature profile, pressure variations, and radial velocity distribution of the TD, and the second resolves the gas to particle partitioning of aerosol with a given condensed-phase volatility distribution in the TD using the VBS approach as described in the literature. Solving the full hydrodynamic equations for the flow characteristics provides a better numeric representation of entry length and radial velocity variations and is an improvement over similar TD modeling studies in the literature. However, results indicate that coupling the two modules is necessary to more accurately resolve the suppression of evaporation due to buildup of organic vapors in the TD, even at the low mass concentrations involved with the presented experiments.
417

A Service Virtualization Architecture for Efficient Multimedia Delivery

Korotich, Elena 20 December 2012 (has links)
This thesis provides a novel architecture for the creation and management of virtual multimedia adaptation services offered by a multimedia-enabled cloud. The aim of the proposed scheme is to provide an optimal yet a transparent user access to adapted media contents while isolating them from the heterogeneity of the utilized devices, diversity of media formats, as well as the details of the adaptation services and performance variations of the underlying network. This goal is achieved through the development of service virtualization models that provide various levels of abstraction of the actual physical services and their performance parameters. Such virtual models offer adaptation functions by comprising adaptation services with accordance to their parameters. Additionally, parameters describing the functional specifics of the adaptation functions, as well as multimedia content features, are organized into a hierarchical structure that facilitates extraction of the virtual models capable of satisfying the conditions expressed by the user requests. At the same time the paramter/feature organization structure itself is flexible enough to allow users to specify media delivery requests at various levels of request details (e.g., summarize video vs. drop specific frames). As a result, in response to a user request for a multimedia content, an optimal virtual service adaptation path is calculated, describing the needed media adaptation operations as well as the appropriate mapping to the physical resources capable of executing such functions. The selection of the adaptation path is done with the use of a novel performance-history based selection mechanism that takes into account the performance variations and relations of the services in a dynamically changing environment of multimedia clouds. A number of experiments are conducted to demonstrate the potential of the proposed work in terms of the enhanced processing time and service quality.
418

Classification of Points Acquired by Airborne Laser Systems

Ruhe, Jakob, Nordin, Johan January 2007 (has links)
During several years research has been performed at the Department of Laser Systems, the Swedish Defense Research Agency (FOI), to develop methods to produce high resolution 3D environment models based on data acquired with airborne laser systems. The 3D models are used for several purposes, both military and civilian applications, for example mission planning, crisis management analysis and planning of infrastructure. We have implemented a new format to store laser point data. Instead of storing rasterized images of the data this new format stores the original location of each point. We have also implemented a new method to detect outliers, methods to estimate the ground surface and also to divide the remaining data into two classes: buildings and vegetation. It is also shown that it is possible to get more accurate results by analyzing the points directly instead of only using rasterized images and image processing algorithms. We show that these methods can be implemented without increasing the computational complexity.
419

Collaborative tagging : folksonomy, metadata, visualization, e-learning, thesis

Bateman, Scott 12 December 2007
Collaborative tagging is a simple and effective method for organizing and sharing web resources using human created metadata. It has arisen out of the need for an efficient method of personal organization, as the number of digital resources in everyday lives increases. While tagging has become a proven organization scheme through its popularity and widespread use on the Web, little is known about its implications and how it may effectively be applied in different situations. This is due to the fact that tagging has evolved through several iterations of use on social software websites, rather than through a scientific or an engineering design process. The research presented in this thesis, through investigations in the domain of e-learning, seeks to understand more about the scientific nature of collaborative tagging through a number of human subject studies. While broad in scope, touching on issues in human computer interaction, knowledge representation, Web system architecture, e-learning, metadata, and information visualization, this thesis focuses on how collaborative tagging can supplement the growing metadata requirements of e-learning. I conclude by looking at how the findings may be used in future research, through using information based in the emergent social networks of social software, to automatically adapt to the needs of individual users.
420

Finding periods in the high mass x-ray binary stars of the magellanic clouds

Briand, Lorin Michel Pierre 26 April 2011
High Mass X-Ray Binary Stars (HMXBs) are stars that contain one early-type main sequence or giant star and one of a black hole, neutron star or white dwarf. HMXBs in the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) are instructive to study because both galaxies are metal poor in compari- son to the Milky Way and they are fairly transparent to both optical and X-ray radiation. This allows a more complete study of the whole population, without the biasing effects of gas and dust that occur in our own Galaxy. The objective of this study was to find the periods of HMXBs in the LMC and SMC with known optical counterparts in the dataset acquired by the Robotic Optical Transient Search Ex- periment telescope. Two possible orbital periods were found for the objects XTE J0055-724 and RX J0101.3-7211 of 1724 days and 478 days, respectively. Continued observations are recommended to conrm the two periods.

Page generated in 0.0475 seconds