• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 466
  • 51
  • 49
  • 21
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 11
  • 8
  • 6
  • 4
  • 3
  • Tagged with
  • 731
  • 117
  • 89
  • 87
  • 86
  • 83
  • 75
  • 74
  • 73
  • 67
  • 65
  • 64
  • 64
  • 57
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

The aerosol indirect effect

Quaas, Johannes 15 December 2015 (has links) (PDF)
Global climate change is considered to be one of the most serious concerns of humankind (United Nations, 1992; United Nations, 2002). Anthropogenic greenhouse gases and aerosols impact considerably the energy balance of the Earth system, possibly provoking adverse effects on social, ecological, and economical equilibria. This is one of the main reasons why the understanding of the Earth’s climate system is of major importance. If better predictions of the response of the climate system to anthropogenic perturbations were available, political decisions against negative impacts could be taken, and social adaptations to changed climate conditions would be possible.
432

Inverse geometry : from the raw point cloud to the 3d surface : theory and algorithms

Digne, Julie 23 November 2010 (has links) (PDF)
Many laser devices acquire directly 3D objects and reconstruct their surface. Nevertheless, the final reconstructed surface is usually smoothed out as a result of the scanner internal de-noising process and the offsets between different scans. This thesis, working on results from high precision scans, adopts the somewhat extreme conservative position, not to loose or alter any raw sample throughout the whole processing pipeline, and to attempt to visualize them. Indeed, it is the only way to discover all surface imperfections (holes, offsets). Furthermore, since high precision data can capture the slightest surface variation, any smoothing and any sub-sampling can incur in the loss of textural detail.The thesis attempts to prove that one can triangulate the raw point cloud with almost no sample loss. It solves the exact visualization problem on large data sets of up to 35 million points made of 300 different scan sweeps and more. Two major problems are addressed. The first one is the orientation of the complete raw point set, an the building of a high precision mesh. The second one is the correction of the tiny scan misalignments which can cause strong high frequency aliasing and hamper completely a direct visualization.The second development of the thesis is a general low-high frequency decomposition algorithm for any point cloud. Thus classic image analysis tools, the level set tree and the MSER representations, are extended to meshes, yielding an intrinsic mesh segmentation method.The underlying mathematical development focuses on an analysis of a half dozen discrete differential operators acting on raw point clouds which have been proposed in the literature. By considering the asymptotic behavior of these operators on a smooth surface, a classification by their underlying curvature operators is obtained.This analysis leads to the development of a discrete operator consistent with the mean curvature motion (the intrinsic heat equation) defining a remarkably simple and robust numerical scale space. By this scale space all of the above mentioned problems (point set orientation, raw point set triangulation, scan merging, segmentation), usually addressed by separated techniques, are solved in a unified framework.
433

An Energy-Efficient Reservation Framework for Large-Scale Distributed Systems

Orgerie, Anne-Cécile 27 September 2011 (has links) (PDF)
Over the past few years, the energy consumption of Information and Communication Technologies (ICT) has become a major issue. Nowadays, ICT accounts for 2% of the global CO2 emissions, an amount similar to that produced by the aviation industry. Large-scale distributed systems (e.g. Grids, Clouds and high-performance networks) are often heavy electricity consumers because -- for high-availability requirements -- their resources are always powered on even when they are not in use. Reservation-based systems guarantee quality of service, allow for respect of user constraints and enable fine-grained resource management. For these reasons, we propose an energy-efficient reservation framework to reduce the electric consumption of distributed systems and dedicated networks. The framework, called ERIDIS, is adapted to three different systems: data centers and grids, cloud environments and dedicated wired networks. By validating each derived infrastructure, we show that significant amounts of energy can be saved using ERIDIS in current and future large-scale distributed systems.
434

Fourier transform spectroscopy of the Orion molecular cloud

Tahić, Margaret Katharine, University of Lethbridge. Faculty of Arts and Science January 2004 (has links)
The Orion Molecular Cloud (OMC) is the nearest, and thus most studied, star forming region to the Earth. To date, most of the studies conducted at submillimetre wavelenths have focused on the spectral line analysis using high resolution heterodyne recievers. However, the role of dust, which is known to be important in the evolution of the interstellar medium, can only be studied through its continuum emission. This thesis presents the first results obtained using a Fourier Transform Spectrometer (FTS) at the James Clerk Maxwell Telescope to study, simultaneously, the continuum and line components of emission on the OMC. / xiii, 139 leaves : ill. (some col.) ; 29 cm.
435

Characteristics of Tropical Midlevel Clouds Using A-Train Measurements

Sutphin, Alisha Brooke 16 December 2013 (has links)
Midlevel clouds are observed globally and impact the general circulation through their influence on the radiation budget and their precipitation production. However, because midlevel clouds occur less frequently than high and low clouds they are relatively understudied. Satellite observations from the MODIS, CALIPSO, and CloudSat instruments onboard the A-Train are combined to study midlevel cloud characteristics in the Tropical Western Pacific (TWP) between January 2007 and December 2010. Characteristic cloud and microphysical properties including cloud top height (CTH), geometric thickness, optical depth, effective radius, and liquid or ice water path (LWP or IWP), and environmental properties, including temperature and specific humidity profiles, are determined for precipitating and non-precipitating midlevel clouds. In the study region, approximately 14% of all cloudy scenes are classified as midlevel clouds (4 km < CTH < 8 km). These are concentrated in areas of deeper convection associated with the Pacific warm pool, ITCZ, and SPCZ. Non-precipitating clouds dominate the region, accounting for approximately 70% of all single and two-layer midlevel clouds scenes. Midlevel clouds occur most frequently in three different scenarios: high over midlevel clouds (~65%), single-layer (~25%), and midlevel over mid- or low-level clouds (~10%). Environmental moisture appears to play a larger role than temperature in determining midlevel cloud distributions due to large variations in moisture between the different cloud scenarios. In all scenes, a trimodal distribution in CTH frequency is found within the midlevel. Two of these peaks have been identified in previous studies; however a third midlevel mode is recognized here. CTHs occur most frequently in peaks between 5-6 km, 6-6.25 km, and 6.5-7.5 km. Although the past studies have only noted two midlevel peaks, this third mode is a robust feature in this dataset. Two types of clouds dominate these peaks: non-precipitating altostratus or altocumulus-like clouds less than 1 km thick and geometrically thick precipitating cumulus congestus clouds. Environmental temperature stable layers and dry maxima are found at each one of these peak frequency heights. Again, moisture seems to play a more dominant role in determining the height of the midlevel clouds due to larger variances between the moisture gradients associated with each peak. Microphysical properties (optical depth, effective radius, and LWP or IWP) are characterized for single-layer clouds. Approximately 30% of all single-layer midlevel clouds are precipitating and these clouds tend to occur on the edges of the deep tropics. In general, precipitating clouds have greater optical depths, effective radii, and water path. This research implies that some past studies at single point locations can be representative of the broader tropics, whereas others are not.
436

Radiative Effects of Dust Aerosols, Natural Cirrus Clouds and Contrails: Broadband Optical Properties and Sensitivity Studies

Yi, Bingqi 16 December 2013 (has links)
This dissertation aims to study the broadband optical properties and radiative effects of dust aerosols and ice clouds. It covers three main topics: the uncertainty of dust optical properties and radiative effects from the dust particle shape and refractive index, the influence of ice particle surface roughening on the global cloud radiative effect, and the simulations of the global contrail radiative forcing. In the first part of this dissertation, the effects of dust non-spherical shape on radiative transfer simulations are investigated. We utilize a spectral database of the single-scattering properties of tri-axial ellipsoidal dust-like aerosols and determined a suitable dust shape model. The radiance and flux differences between the spherical and ellipsoidal models are quantified, and the non-spherical effect on the net flux and heating rate is obtained over the solar spectrum. The results indicate the particle shape effect is related to the dust optical depth and surface albedo. Under certain conditions, the dust particle shape effect contributes to 30% of the net flux at the top of the atmosphere. The second part discusses how the ice surface roughening can exert influence on the global cloud radiative effect. A new broadband parameterization for ice cloud bulk scattering properties is developed using severely roughened ice particles. The effect of ice particle surface roughness is derived through simulations with the Fu-Liou and RRTMG radiative transfer codes and the Community Atmospheric Model. The global averaged net cloud radiative effect due to surface roughness is around 1.46 Wm-2. Non-negligible increase in longwave cloud radiative effect is also found. The third part is about the simulation of global contrail radiative forcing and its sensitivity studies using both offline and online modeling frameworks. Global contrail distributions from the literature and Contrail Cirrus Prediction Tool are used. The 2006 global annual averaged contrail net radiative forcing from the offline model is estimated to be 11.3 mW m^(-2), with the regional contrail radiative forcing being more than ten times stronger. Sensitivity tests show that contrail effective size, contrail layer height, the model cloud overlap assumption, and contrail optical properties are among the most important factors.
437

Seasonal and inter-annual changes in the computation of Aura MLS HCl depletion and PSC-induced areas in the Antarctic polar stratosphere: 2005-2010 climate-chemistry assessment: the role of clouds in the Antarctic middle atmosphere

Arevalo Torres, Andolsa January 2012 (has links)
An examination of the seasonal and spatial distribution of Polar Stratospheric Clouds (PSCs) inferred from standard temperature profiles in the lower-middle atmosphere above Antarctica, as derived from the Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) satellite observations and NCEP/NCAR assimilations, is provided. Chemical volume mixing ratio (VMR) observations of EOS Aura MLS v2.2 hydrogen chloride (HCl) were used to show the interannual variability of PSC formation with respect to stratospheric chlorine partitioning during five Southern Hemisphere Antarctic seasons from 2005 to 2009. A remarkable first set of results, obtained from an algorithm developed for modelling HCl depletion areas in the Antarctic polar vortex region, and based on satellite observations, is presented. In particular, the analysis of HCl concentration data obtained from 2006 indicated that the area processed for HCl was larger than the area of PSC during some periods of Antarctic winter, and that this result was robust with respect to the various PSC formation and HCl depletion thresholds utilized. The results suggest that an underestimation in chlorine activation area can occur when temperature thresholds for PSC formation thresholds are employed. The work presented here also evaluated chlorine activation via sulfate aerosol (SA) in the Southern Hemisphere 2006 stratosphere, based on satellite measurements of water vapor (H2O) and constant values of SA, by implementing the TACL formula of Drdla and Müller [2010] in contrast to the TNAT formula of Hanson and Mauersberger [1988]. The results indicated that the former formula was not completely sufficient for accurately modeling areas of depleted HCl and chlorine deactivation for all pressure surfaces in the Antarctic stratosphere. Based on the results of this study, the role of SA in chlorine activation appears to be more important at lower altitudes than for areas higher in the stratosphere.
438

A study of the absorption characteristics of gaseous galaxy halos in the local Universe

Herenz, Peter January 2014 (has links)
Today, it is well known that galaxies like the Milky Way consist not only of stars but also of gas and dust. The galactic halo, a sphere of gas that surrounds the stellar disk of a galaxy, is especially interesting. It provides a wealth of information about in and outflowing gaseous material towards and away from galaxies and their hierarchical evolution. For the Milky Way, the so-called high-velocity clouds (HVCs), fast moving neutral gas complexes in the halo that can be traced by absorption-line measurements, are believed to play a crucial role in the overall matter cycle in our Galaxy. Over the last decades, the properties of these halo structures and their connection to the local circumgalactic and intergalactic medium (CGM and IGM, respectively) have been investigated in great detail by many different groups. So far it remains unclear, however, to what extent the results of these studies can be transferred to other galaxies in the local Universe. In this thesis, we study the absorption properties of Galactic HVCs and compare the HVC absorption characteristics with those of intervening QSO absorption-line systems at low redshift. The goal of this project is to improve our understanding of the spatial extent and physical conditions of gaseous galaxy halos in the local Universe. In the first part of the thesis we use HST /STIS ultraviolet spectra of more than 40 extragalactic background sources to statistically analyze the absorption properties of the HVCs in the Galactic halo. We determine fundamental absorption line parameters including covering fractions of different weakly/intermediately/highly ionized metals with a particular focus on SiII and MgII. Due to the similarity in the ionization properties of SiII and MgII, we are able to estimate the contribution of HVC-like halo structures to the cross section of intervening strong MgII absorbers at z = 0. Our study implies that only the most massive HVCs would be regarded as strong MgII absorbers, if the Milky Way halo would be seen as a QSO absorption line system from an exterior vantage point. Combining the observed absorption-cross section of Galactic HVCs with the well-known number density of intervening strong MgII absorbers at z = 0, we conclude that the contribution of infalling gas clouds (i.e., HVC analogs) in the halos of Milky Way-type galaxies to the cross section of strong MgII absorbers is 34%. This result indicates that only about one third of the strong MgII absorption can be associated with HVC analogs around other galaxies, while the majority of the strong MgII systems possibly is related to galaxy outflows and winds. The second part of this thesis focuses on the properties of intervening metal absorbers at low redshift. The analysis of the frequency and physical conditions of intervening metal systems in QSO spectra and their relation to nearby galaxies offers new insights into the typical conditions of gaseous galaxy halos. One major aspect in our study was to regard intervening metal systems as possible HVC analogs. We perform a detailed analysis of absorption line properties and line statistics for 57 metal absorbers along 78 QSO sightlines using newly-obtained ultraviolet spectra obtained with HST /COS. We find clear evidence for bimodal distribution in the HI column density in the absorbers, a trend that we interpret as sign for two different classes of absorption systems (with HVC analogs at the high-column density end). With the help of the strong transitions of SiII λ1260, SiIII λ1206, and CIII λ977 we have set up Cloudy photoionization models to estimate the local ionization conditions, gas densities, and metallicities. We find that the intervening absorption systems studied by us have, on average, similar physical conditions as Galactic HVC absorbers, providing evidence that many of them represent HVC analogs in the vicinity of other galaxies. We therefore determine typical halo sizes for SiII, SiIII, and CIII for L = 0.01L∗ and L = 0.05L∗ galaxies. Based on the covering fractions of the different ions in the Galactic halo, we find that, for example, the typical halo size for SiIII is ∼ 160 kpc for L = 0.05L∗ galaxies. We test the plausibility of this result by searching for known galaxies close to the QSO sightlines and at similar redshifts as the absorbers. We find that more than 34% of the measured SiIII absorbers have galaxies associated with them, with the majority of the absorbers indeed being at impact parameters ρ ≤160 kpc. / Galaxien bestehen nicht nur aus Planeten und Sternen, sondern sind u.a. auch von einer Hülle aus Gas und Staub, dem Halo, umgeben. Dieser Halo spielt für die Entwicklung der Galaxie eine zentrale Rolle, da er mit der galaktischen Scheibe wechselwirken kann. Für das Verständnis des galaktischen Materiekreislaufs ist es daher entscheidend, die Prozesse und Vorgänge sowie das Zusammenspiel der verschiedenen Gasphasen in diesem Übergangsbereich zum intergalaktischen Medium charakterisieren und verstehen zu können. In der vorliegenden Arbeit werden lokale Phänomene, die sogenannten Hochgeschwindigkeitswolken (HVCs), im Halo der Milchstraße mit Hilfe des Hubble-Weltraumteleskops analysiert und ausgewertet. Im Gegensatz zu dem normalen Halo Gas bewegen sich diese HVCs mit ungewöhnlich hohen Geschwindigkeiten durch die ̈ äußeren Bereiche der Milchstraße. Sie passen daher nicht in das Galaktische Ge- schwindigkeitsmodell und stellen eine eigene, wichtige Klasse von Objekten dar, welche mit der Galaxie wechselwirken und diese beeinflussen. Für die Analyse dieser HVCs werden mehr als 40 Spektren von extragalaktischen Hintergrundquellen statistisch untersucht, um u.a. den Bedeckungsanteil von verschiedenen niedrig-/mittel- und hochionisierten Metallen zu ermitteln. Wegen der Ähnlichkeit der Ionisationsparameter von einfach ionisiertem Silizium, SiII, und einfach ionisiertem Magnesium, MgII, ist es möglich, den Beitrag von HVCs zum Wirkungsquerschnitt von starken MgII Absorbern im lokalen Universum zu bestimmen. Es stellt sich heraus, dass, würde man von außen auf die Milchstraße schauen, Galaktische HVCs etwa 52 % zum totalen Wirkungsquerschnitt von starken MgII Absorptionssystemen in der Milchstraße beitragen. Weiterhin ergibt sich, dass nur etwa ein Drittel der starken MgII Absorptionssysteme in der Umgebung von Milchstraßen-ähnlichen Galaxien als HVC Gegenstücke identifziert werden kann. Betrachtet man die große Anzahl an bekannten MgII Absorptionssystemen folgt daraus, dass das HVC-Phänomen nicht alleine auf unsere Galaxie beschränkt ist, sondern im Gegenteil, weit verbreitet zu sein scheint. Weiterhin werden die Eigenschaften von Metallsystemen bei niedriger Rotverschiebung in Quasarspektren analysiert. Die Suche nach extragalaktischen Metallsystemen in einer Vielzahl von Spektren und deren statistische Auswertung bezogen auf ihre Ursprungsgalaxien ermöglicht es, neue Erkenntnisse über die typische Struktur von Halos Milchstraßen-ähnlicher Galaxien zu erlangen. Eine der Hauptfragestellungen ist die Identifizierung von entfernten Metallsystemen als HVC-Analoga. Dazu wurden weitere Quasarspektren des Hubble-Teleskops ausgewertet und mit den Ergebnissen über Galaktische HVCs verglichen. Es zeigt sich hierbei, dass z.B. in der Säulendichteverteilung von neutralem Wasserstoff eine deutliche zweikomponentige Struktur zu erkennen ist. Diese könnte das Resultat von zwei verschiedenen Absorber Populationen sein, wobei eine HVC-ähnliche Eigenschaften aufweist. Diese Absorptionssysteme besitzen im Mittel sehr ähnliche Eigenschaften wie Galaktische Absorber, z.B. in Bezug auf die Eigenschaften des Gases oder dessen Zusammensetzung. Das impliziert u.a., dass sich auch dazugehörige Galaxien innerhalb eines bestimmten Abstandes um diese Absorber befinden sollten. Diese Vermutung wird anhand der Daten exemplarisch für zweichfach ionisiertes Silizium, SiII, untersucht. Es stellt sich heraus, dass sich in mehr als 34 % der Fälle zugehörige Galaxien bei SiIII Absorbern befinden, wobei die Mehrheit sogar innerhalb des von uns ermittelten mittleren Detektionsradius von 160 kpc zu finden ist. Allgemein können wir viele Hinweise darauf finden, dass das HVC-Phänomen nicht nur auf die Milchstraße beschränkt, sondern weit verbreitet ist. Zusätzlich scheinen Metallsysteme in Quasarspektren gute Indikatoren für HVC-Analoga in der Umgebung von anderen entfernten Galaxien zu sein.
439

Bringing Visibility in the Clouds : using Security, Transparency and Assurance Services

Aslam, Mudassar January 2014 (has links)
The evolution of cloud computing allows the provisioning of IT resources over the Internet and promises many benefits for both - the service users and providers. Despite various benefits offered by cloud based services, many users hesitate in moving their IT systems to the cloud mainly due to many new security problems introduced by cloud environments. In fact, the characteristics of cloud computing become basis of new problems, for example, support of third party hosting introduces loss of user control on the hardware; similarly, on-demand availability requires reliance on complex and possibly insecure API interfaces; seamless scalability relies on the use of sub-providers; global access over public Internet exposes to broader attack surface; and use of shared resources for better resource utilization introduces isolation problems in a multi-tenant environment. These new security issues in addition to existing security challenges (that exist in today's classic IT environments) become major reasons for the lack of user trust in cloud based services categorized in Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) or Infrastructure-as-a-Service (IaaS). The focus of this thesis is on IaaS model which allows users to lease IT resources (e.g. computing power, memory, storage, etc.) from a public cloud to create Virtual Machine (VM) instances. The public cloud deployment model considered in this thesis exhibits most elasticity (i.e. degree of freedom to lease/release IT resources according to user demand) but is least secure as compared to private or hybrid models. As a result, public clouds are not trusted for many use cases which involve processing of security critical data such as health records, financial data, government data, etc. However, public IaaS clouds can also be made trustworthy and viable for these use cases by providing better transparency and security assurance services for the user. In this thesis, we consider such assurance services and identify security aspects which are important for making public clouds trustworthy. Based upon our findings, we propose solutions which promise to improve cloud transparency thereby realizing trustworthy clouds. The solutions presented in this thesis mainly deal with the secure life cycle management of the user VM which include protocols and their implementation for secure VM launch and migration. The VM launch and migration solutions ensure that the user VM is always hosted on correct cloud platforms which are setup according to a profile that fulfills the use case relevant security requirements. This is done by using an automated platform security audit and certification mechanism which uses trusted computing and security automation techniques in an integrated solution. In addition to provide the assurance about the cloud platforms, we also propose a solution which provides assurance about the placement of user data in correct and approved geographical locations which is critical from many legal aspects and usually an important requirement of the user. Finally, the assurance solutions provided in this thesis increase cloud transparency which is important for user trust and to realize trustworthy clouds.
440

A Service Virtualization Architecture for Efficient Multimedia Delivery

Korotich, Elena 20 December 2012 (has links)
This thesis provides a novel architecture for the creation and management of virtual multimedia adaptation services offered by a multimedia-enabled cloud. The aim of the proposed scheme is to provide an optimal yet a transparent user access to adapted media contents while isolating them from the heterogeneity of the utilized devices, diversity of media formats, as well as the details of the adaptation services and performance variations of the underlying network. This goal is achieved through the development of service virtualization models that provide various levels of abstraction of the actual physical services and their performance parameters. Such virtual models offer adaptation functions by comprising adaptation services with accordance to their parameters. Additionally, parameters describing the functional specifics of the adaptation functions, as well as multimedia content features, are organized into a hierarchical structure that facilitates extraction of the virtual models capable of satisfying the conditions expressed by the user requests. At the same time the paramter/feature organization structure itself is flexible enough to allow users to specify media delivery requests at various levels of request details (e.g., summarize video vs. drop specific frames). As a result, in response to a user request for a multimedia content, an optimal virtual service adaptation path is calculated, describing the needed media adaptation operations as well as the appropriate mapping to the physical resources capable of executing such functions. The selection of the adaptation path is done with the use of a novel performance-history based selection mechanism that takes into account the performance variations and relations of the services in a dynamically changing environment of multimedia clouds. A number of experiments are conducted to demonstrate the potential of the proposed work in terms of the enhanced processing time and service quality.

Page generated in 0.3789 seconds