• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 466
  • 51
  • 49
  • 21
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 11
  • 8
  • 6
  • 4
  • 3
  • Tagged with
  • 731
  • 117
  • 89
  • 87
  • 86
  • 83
  • 75
  • 74
  • 73
  • 67
  • 65
  • 64
  • 64
  • 57
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
621

The Auroral Large Imaging System : design, operation and scientific results

Brändström, Urban January 2003 (has links)
<p>The Auroral Large Imaging System (ALIS) was proposed in 1989 by Åke Steen as a joint Scandinavian ground-based nework of automated auroral imaging stations. The primary scientic objective was in the field of auroral physics, but it was soon realised that ALIS could be used in other fields, for example, studies of Polar Stratospheric Clouds (PSC), meteors, as well as other atmospheric phenomena.</p><p>This report describes the design, operation and scientic results from a Swedish prototype of ALIS consisting of six unmanned remote-controlled stations located in a grid of about 50 km in northern Sweden. Each station is equipped with a sensitive high-resolution (1024 x 1024 pixels) unintensified monochromatic CCDimager. A six-position filter-wheel for narrow-band interference filters facilitates absolute spectroscopic measurements of, for example, auroral and airglow emissions. Overlapping fields-of-view resulting from the station baseline of about 50 km combined with the station field-of-view of 50° to 60°, enable triangulation as well as tomographic methods to be employed for obtaining altitude information of the observed phenomena.</p><p>ALIS was probably one of the first instruments to take advantage of unintensi- fied (i.e. no image-intensifier) scientific-grade CCDs as detectors for spectroscopic imaging studies with multiple stations of faint phenomena such as aurora, airglow, etc. This makes absolute calibration a task that is as important as it is dificult.</p><p>Although ALIS was primarily designed for auroral studies, the majority of the scientific results so far have, quite unexpectedly, been obtained from observations of HF pump-enhanced airglow (recently renamed Radio-Induced Aurora). ALIS made the first unambiguous observation of this phenomena at high-latitudes and the first tomography-like inversion of height profiles of the airglow regions. The scientific results so far include tomographic estimates of the auroral electron spectra, coordinated observations with satellite and radar, as well as studies of polar stratospheric clouds. An ALIS imager also participated in a joint project that produced the first ground-based daytime auroral images. Recently ALIS made spectroscopic observations of a Leonid meteor-trail and preliminary analysis indicates the possible detection of water in the Leonid.</p>
622

Using ship tracks to characterize the effects of haze on cloud properties

Segrin, Matthew S. 14 June 2006 (has links)
1-km MODIS observations of ship tracks off the west coast of the U.S. are used to characterize changes in cloud visible optical depths, cloud droplet radii, cloud cover fraction, and column cloud liquid water amount as low-level marine clouds respond to particle pollution from underlying ships. This study re-examines the finding of earlier studies based on Advanced Very High Resolution Radiometer (AVHRR) observations showing that when restricted to pixels overcast by low-level, single-layered cloud systems, the polluted clouds in the ship tracks had on average ~20% less liquid water than the nearby uncontaminated clouds. This study uses Moderate Imaging Spectroradiometer (MODIS) observations from the Terra and Aqua satellites and takes advantage of the 1.6 and 2.1-µm channels in addition to the 3.7-µm channel available on AVHRR to derive droplet effective radii. The additional channels allow for different and presumably more comprehensive analyses of the cloud properties. In addition, this study uses a retrieval scheme that accounts for the effects of partial cloudiness within the 1-km pixels on the retrieved cloud properties. An improved automated track finding scheme that allows for the selection of unpolluted clouds to be closer to the clouds identified as being polluted is also employed in this study. When restricted to overcast pixels, as was done in earlier studies, results from the Terra and Aqua MODIS observations indicate that cloud droplet effective radii are significantly smaller and cloud optical depths significantly larger for polluted pixels than for unpolluted pixels. Cloud top height does not change when clouds become polluted but cloud liquid water path decreases slightly but significantly. The decrease in cloud liquid water obtained with the MODIS observations was at most ~10%, much less than the 20% obtained with the AVHRR observations. This decrease, however, depended on the wavelength used to derive the droplet effective radii. Also, the clouds that were most sensitive to pollution were those with small optical depths and large droplet effective radii. / Graduation date: 2007
623

The Auroral Large Imaging System : design, operation and scientific results

Brändström, Urban January 2003 (has links)
The Auroral Large Imaging System (ALIS) was proposed in 1989 by Åke Steen as a joint Scandinavian ground-based nework of automated auroral imaging stations. The primary scientic objective was in the field of auroral physics, but it was soon realised that ALIS could be used in other fields, for example, studies of Polar Stratospheric Clouds (PSC), meteors, as well as other atmospheric phenomena. This report describes the design, operation and scientic results from a Swedish prototype of ALIS consisting of six unmanned remote-controlled stations located in a grid of about 50 km in northern Sweden. Each station is equipped with a sensitive high-resolution (1024 x 1024 pixels) unintensified monochromatic CCDimager. A six-position filter-wheel for narrow-band interference filters facilitates absolute spectroscopic measurements of, for example, auroral and airglow emissions. Overlapping fields-of-view resulting from the station baseline of about 50 km combined with the station field-of-view of 50° to 60°, enable triangulation as well as tomographic methods to be employed for obtaining altitude information of the observed phenomena. ALIS was probably one of the first instruments to take advantage of unintensi- fied (i.e. no image-intensifier) scientific-grade CCDs as detectors for spectroscopic imaging studies with multiple stations of faint phenomena such as aurora, airglow, etc. This makes absolute calibration a task that is as important as it is dificult. Although ALIS was primarily designed for auroral studies, the majority of the scientific results so far have, quite unexpectedly, been obtained from observations of HF pump-enhanced airglow (recently renamed Radio-Induced Aurora). ALIS made the first unambiguous observation of this phenomena at high-latitudes and the first tomography-like inversion of height profiles of the airglow regions. The scientific results so far include tomographic estimates of the auroral electron spectra, coordinated observations with satellite and radar, as well as studies of polar stratospheric clouds. An ALIS imager also participated in a joint project that produced the first ground-based daytime auroral images. Recently ALIS made spectroscopic observations of a Leonid meteor-trail and preliminary analysis indicates the possible detection of water in the Leonid.
624

Investigation of Polar Mesosphere Summer Echoes in Northern Scandinavia

Barabash, Victoria January 2003 (has links)
This PhD thesis deals with phenomena which are closely related to the unique thermal structure of the polar summer mesosphere, namely Polar Mesosphere Summer Echoes (PMSE). PMSE are strong radar echoes commonly observed by VHF MST radars from thin layers in the 80-90 km altitude interval at high latitudes during summer. They follow a seasonal pattern of abrupt appearance in late May and a gradual disappearance in mid-August. This period corresponds roughly to the time between the completion of the summer time cooling of the polar mesopause to the time of reversal of the mesospheric circulation to autumn condition. In this connection, PMSE are associated with the extremely low temperatures, i.e. below 140 K, which are unique to the polar summer mesopause. Traditional theories of radar (partial) reflection and scattering have been unable to explain the PMSE and the exact mechanism for their occurrence remains unclear despite the steadily increasing interest in them over the past 20 years. Currently accepted theories regarding the mechanism giving rise to PMSE agree that one of the conditions needed for enhanced radar echoes is the presence of low-mobility charge carries such as large cluster ions and ice aerosols which capture the ambient electrons. It has been established that the PMSE are in some way associated with noctilucent clouds (NLC), layers of ice crystals, which constitute the highest observed clouds in the earth’s atmosphere. PMSE occurrence and dynamics are also found to be closely connected with the planetary and gravity waves. Observations of PMSE presented in this thesis have been carried out by the Esrange MST radar (ESRAD) located at Esrange (67°56’N, 21°04’E) just outside Kiruna in northernmost Sweden. The radar operates at 52 MHz with 72 kW peak power and a maximum duty cycle of 5%. The antenna consists of 12x12 array of 5-element Yagis with a 0.7l spacing. During the PMSE measurements the radar used a 16-bit complementary code having a baud length of 1mS. This corresponds to height resolution of 150 m. The sampling frequency was set at 1450 Hz. The covered height range was 80-90 km. The presence of PMSE was determined on the basis of the radar SNR (signal-to-noise ratio). The PMSE measurements have been made during May-August each year since 1997. PMSE seasonal and diurnal occurrence rates as well as dynamics have been studied in connection with tidal winds, planetary waves, temperature and water vapor content in the mesosphere (Papers I, IV and VI). Simultaneous and common-volume observations of PMSE and noctilucent clouds have been performed by radar, lidar and CCD camera (Paper V). Correlation between variations in PMSE and variations in extra ionization added by precipitating energetic electrons or high-energy particles from the Sun has been examined (Papers II and III). Possible influence of transport effects due to the electric field on PMSE appearance has been studied during a solar proton event (Paper III).
625

The characterization of deep convection in the tropical tropopause layer using active and passive satellite observations

Young, Alisa H. 08 July 2011 (has links)
Several studies suggest that deep convection that penetrates the tropical tropopause layer may influence the long-term trends in lower stratospheric water vapor. This thesis investigates the relationship between penetrating deep convection and lower stratospheric water vapor variability using historical infrared (IR) observations. However, since infrared observations do not directly resolve cloud vertical structure and cloud top height, and there has been some debate on their usefulness to characterize penetrating deep convective clouds, CloudSat/Calipso and Aqua MODIS observations are first combined to understand how to best interpret IR observations of penetrating tops. The major findings of the combined CloudSat/Calipso and Aqua MODIS analysis show that penetrating deep convection predominantly occur in the western tropical Pacific Ocean. This finding is consistent with IR studies but is in contrast to previous radar studies where penetrating deep convective clouds predominantly occur over land regions such as equatorial Africa. Estimates on the areal extent of penetrating deep convection show that when using IR observations with a horizontal resolution of 10 km, about two thirds of the events are large enough to be detected. Evaluation of two different IR detection schemes, which includes cold cloud features/pixels and positive brightness temperature differences (+BTD), show that neither schemes completely separate between penetrating deep convection and other types of high clouds. However, the predominant fraction of +BTD distributions and cold cloud features/pixels ≤ 210 K is due to the coldest and highest penetrating tops as inferred from collocated IR and radar/lidar observations. This result is in contrast to previous studies that suggest the majority of cold cloud features/pixels ≤ 210 K are cirrus/anvil cloud fractions that coexist with deep convective clouds. Observations also show that a sufficient fraction of penetrating deep convective cloud tops occur in the extratropics. This provides evidence that penetrating deep convection should be documented as a pathway of stratospheric-tropospheric exchange within the extratropical region. Since the cold cloud feature/pixel ≤ 210 K approach was found to be a sufficient method to detect penetrating deep convection it was used to develop a climatology of the coldest penetrating deep convective clouds from GridSat observations covering years 1998-2008. The highest frequencies of the coldest penetrating deep convective clouds consistently occur in the western-central Pacific and Indian Ocean. Monthly frequency anomalies in penetrating deep convection were evaluated against monthly anomalies in lower stratospheric water vapor at 82 mb and show higher correlations for the western-central Pacific regions in comparison to the tropics. At a lag of 3 months, the combined western-central Pacific had a small but significant anticorrelation, where the largest amount of variance explained by the combined western-central Pacific region was 8.25%. In conjunction with anomalies in the 82 mb water vapor mixing ratios, decreasing trends for the 1998-2008 period were also observed for tropics, the western Pacific and Indian Ocean. Although none of these trends were significant at the 95% confidence level, decreases in the frequency of penetrating deep convection over the 1998-2008 shows evidence that could explain in part some of the 82 mb lower stratospheric water vapor variability.
626

NEW PERSPECTIVES FOR ANALYZING THE BREAKUP, ENVIRONMENT, EVOLUTION, COLLISION RISK AND REENTRY OF SPACE DEBRIS OBJECTS

Anilkumar, A K 02 1900 (has links)
Vikram Sarabhai Space Centre,Trivandrum / In the space surrounding the earth there are two major regions where orbital debris causes concern. They are the Low Earth Orbits (LEO) up to about 2000 km, and Geosynchronous Orbits (GEO) at an altitude of around 36000 km. The impact of the debris accumulations are in principle the same in the two regions; nevertheless they require different approaches and solutions, due to the fact that the perturbations in the orbital decay due to atmospheric drag effects predominates in LEO, gravitational forces including earth’s oblateness and luni solar effects dominating in GEO are different in these two regions. In LEO it is generally known that the debris population dominates even the natural meteoroid population for object sizes 1 mm and larger. This thesis focuses the study mainly in the LEO region. Since the first satellite breakup in 1961 up to 01 January 2003 more than 180 spacecraft and rocket bodies have been known to fragment in orbit. The resulting debris fragments constitute nearly 40% of the 9000 or more of the presently tracked and catalogued objects by USSPACECOM. The catalogued fragment count does not include the much more numerous fragments, which are too small to be detected from ground. Hence in order to describe the trackable orbital debris environment, it is important to develop mathematical models to simulate the trackable fragments and later expand it to untrackable objects. Apart from the need to better characterize the orbital debris environment down to sub millimeter particles, there is also a pressing necessity of simulation tools able to model in a realistic way the long term evolution of space debris, to highlight areas, which require further investigations, and to study the actual mitigation effects of space policy measures. The present thesis has provided newer perspectives for five major issues in space debris modeling studies. The issues are (i) breakup modeling, (ii) environment modeling, (iii) evolution of the debris environment, (iv) collision probability analysis and (v) reentry prediction. The Chapter 1 briefly describes an overview of space debris environment and the issues associated with the growing space debris populations. A literature survey of important earlier work carried out regarding the above mentioned five issues are provided in the Chapter 2. The new contributions of the thesis commence from Chapter 3. The Chapter 3 proposes a new breakup model to simulate the creation of debris objects by explosion in LEO named “A Semi Stochastic Environment Modeling for Breakup in LEO” (ASSEMBLE). This model is based on a study of the characteristics of the fragments from on orbit breakups as provided in the TLE sets for the INDIAN PSLV-TES mission spent upper stage breakup. It turned out that based on the physical mechanisms in the breakup process the apogee, perigee heights (limited by the breakup altitude) closely fit suitable Laplace distributions and the eccentricity follows a lognormal distribution. The location parameters of these depend on the orbit of the parent body at the time of breakup and their scale parameters on the intensity of explosion. The distribution of the ballistic coefficient in the catalogue was also found to follow a lognormal distribution. These observations were used to arrive at the proper physical, aerodynamic, and orbital characteristics of the fragments. Subsequently it has been applied as an inverse problem to simulate and further validate it based on some more typical well known historical on orbit fragmentation events. All the simulated results compare quite well with the observations both at the time of breakup and at a later epoch. This model is called semi stochastic in nature since the size and mass characteristics have to be obtained from empirical relations and is capable of simulating the complete scenario of the breakup. A new stochastic environment model of the debris scenario in LEO that is simple and impressionistic in nature named SIMPLE is proposed in Chapter 4. Firstly among the orbital debris, the distribution of the orbital elements namely altitude, perigee height, eccentricity and the ballistic coefficient values for TLE sets of data in each of the years were analyzed to arrive at their characteristic probability distributions. It is observed that the altitude distribution for the number of fragments exhibits peaks and it turned out that such a feature can be best modeled with a tertiary mixture of Laplace distributions with eight parameters. It was noticed that no statistically significant variations could be observed for the parameters across the years. Hence it is concluded that the probability density function of the altitude distribution of the debris objects has some kind of equilibrium and it follows a three component mixture of Laplace distributions. For the eccentricity ‘e’ and the ballistic parameter ‘B’ values the present analysis showed that they could be acceptably quite well fitted by Lognormal distributions with two parameters. In the case of eccentricity also the describing parameter values do not vary much across the years. But for the parameters of the B distribution there is some trend across the years which perhaps may be attributed to causes such as decay effect, miniaturization of space systems and even the uncertainty in the measurement data of B. However in the absence of definitive cause that can be attributed for the variation across the years, it turns out to be best to have the most recent value as the model value. Lastly the same kind of analysis has also been carried out with respect to the various inclination bands. Here the orbital parameters are analyzed with respect to the inclination bands as is done in ORDEM (Kessler et al 1997, Liou et al 2001) for near circular orbits in LEO. The five inclination bands considered here are 0-36 deg (in ORDEM they consider 19-36 deg, and did not consider 0-19 deg), 36-61 deg, 61-73 deg, 73-91 deg and 91- 180 deg, and corresponding to each band, the altitude, eccentricity and B values were modeled. It is found that the third band shows the models with single Laplace distribution for altitude and Lognormal for eccentricity and B fit quite well. The altitude of other bands is modeled using tertiary mixture of Laplace distributions, with the ‘e’ and ‘B’ following once again a Lognormal distribution. The number of parameter values in SIMPLE is, in general, just 8 for each description of altitude or perigee distributions whereas in ORDEM96 it is more. The present SIMPLE model captures closely all the peak densities without losing the accuracy at other altitudes. The Chapter 5 treats the evolution of the debris objects generated by on orbit breakup. A novel innovative approach based on the propagation of an equivalent fragment in a three dimensional bin of semi major axis, eccentricity, and the ballistic coefficient (a, e, B) together with a constant gain Kalman filter technique is described in this chapter. This new approach propagates the number density in a bin of ‘a’ and ‘e’ rapidly and accurately without propagating each and every of the space debris objects in the above bin. It is able to assimilate the information from other breakups as well with the passage of time. Further this approach expands the scenario to provide suitable equivalent ballistic coefficient values for the conglomeration of the fragments in the various bins. The heart of the technique is to use a constant Kalman gain filter, which is optimal to track the dynamically evolving fragment scenario and further expand the scenario to provide time varying equivalent ballistic coefficients for the various bins. In the next chapter 6 a new approach for the collision probability assessment utilizing the closed form solution of Wiesel (1989) by the way of a three dimensional look up table, which takes only air drag effect and an exponential model of the atmosphere, is presented. This approach can serve as a reference collision probability assessment tool for LEO debris cloud environment. This approach takes into account the dynamical behavior of the debris objects propagation and the model utilizes a simple propagation for quick assessment of collision probability. This chapter also brings out a comparison of presently available collision probability assessment algorithms based on their complexities, application areas and sample space on which they operate. Further the quantitative assessment of the collision probability estimates between different presently available methods is carried out and the obtained collision probabilities are match qualitatively. The Chapter 7 utilizes once again the efficient and robust constant Kalman gain filter approach that is able to handle the many uncertain, variable, and complex features existing in the scenario to predict the reentry time of the risk objects. The constant gain obtained by using only a simple orbit propagator by considering drag alone is capable of handling the other modeling errors in a real life situation. A detailed validation of the approach was carried out based on a few recently reentered objects and comparison of the results with the predictions of other agencies during IADC reentry campaigns are also presented. The final Chapter 8 provides the conclusions based on the present work carried together with suggestions for future efforts needed in the study of space debris. Also the application of the techniques evolved in the present work to other areas such as atmospheric data assimilation and forecasting have also been suggested.
627

Weather Modification in Arizona, 1971

Osborn, Herbert B. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / There have been many efforts in recent years to modify thunderstorms through cloud seeding. Collective cloud seeding efforts in Arizona before 1971 are reviewed and an operational convective cloud seeding program carried out in Arizona in the summer of 1971 is analyzed. The comprehensive Santa Catalina cloud seeding experiment (1957 to 1964) was a randomized seeding using silver iodide. Results of this experiment are uncertain as numerous interpretations are possible. Numerous individual experiments from 1966 to 1970 at flagstaff were conducted, with uncertain results. An intensive program of seeding individual cumulus clouds with silver iodide was carried out in the summer of 1971 in central and eastern Arizona. No statistically significant changes were noted. Results of the Catalina experiment imply that seeding decreased rainfall on and downwind from the target. Two other experiments were inconclusive. Nine figures show precipitation patterns.
628

Studying Protein Organization in Cellular Membranes by High-Resolution Microscopy

Saka Kırlı, Sinem 29 October 2013 (has links)
No description available.
629

Evolving Starburst Model of FIR/sub-mm/mm Line Emission and Its Applications to M82 and Nearby Luminous Infrared Galaxies

Yao, Lihong 08 March 2011 (has links)
This thesis presents a starburst model for far-infrared/sub-millimeter/millimeter (FIR/sub-mm/mm) line emission of molecular and atomic gas in an evolving starburst region, which is treated as an ensemble of non-interacting hot bubbles which drive spherical shells of swept-up gas into a surrounding uniform gas medium. These bubbles and shells are driven by winds and supernovae within massive star clusters formed during an instantaneous starburst. The underlying stellar radiation from the evolving clusters affects the properties and structure of photodissociation regions (PDRs) in the shells, and hence the spectral energy distributions (SEDs) of the molecular and atomic line emission from these swept-up shells and the associated parent giant molecular clouds (GMCs) contains a signature of the stage evolution of the starburst. The physical and chemical properties of the shells and their structure are computed using a a simple well known similarity solution for the shell expansion, a stellar population synthesis code, and a time-dependent PDR chemistry model. The SEDs for several molecular and atomic lines ($^{12}$CO and its isotope $^{13}$CO, HCN, HCO$^+$, C, O, and C$^+$) are computed using a non-local thermodynamic equilibrium (non-LTE) line radiative transfer model. By comparing our models with the available observed data of nearby infrared bright galaxies, especially M 82, we constrain the models and in the case of M 82, provide estimates for the age of the recent starburst activity. We also derive the total H$_2$ gas mass in the measured regions of the central 1 kpc starburst disk of M 82. In addition, we apply the model to represent various stages of starburst evolution in a well known sample of nearby luminous infrared galaxies (LIRGs). In this way, we interpret the relationship between the degree of molecular excitation and ratio of FIR to CO luminosity to possibly reflect different stages of the evolution of star-forming activity within their nuclear regions. We conclude with an assessment of the strengths and weaknesses of this approach to dating starbursts, and suggest future work for improving the model.
630

Evolving Starburst Model of FIR/sub-mm/mm Line Emission and Its Applications to M82 and Nearby Luminous Infrared Galaxies

Yao, Lihong 08 March 2011 (has links)
This thesis presents a starburst model for far-infrared/sub-millimeter/millimeter (FIR/sub-mm/mm) line emission of molecular and atomic gas in an evolving starburst region, which is treated as an ensemble of non-interacting hot bubbles which drive spherical shells of swept-up gas into a surrounding uniform gas medium. These bubbles and shells are driven by winds and supernovae within massive star clusters formed during an instantaneous starburst. The underlying stellar radiation from the evolving clusters affects the properties and structure of photodissociation regions (PDRs) in the shells, and hence the spectral energy distributions (SEDs) of the molecular and atomic line emission from these swept-up shells and the associated parent giant molecular clouds (GMCs) contains a signature of the stage evolution of the starburst. The physical and chemical properties of the shells and their structure are computed using a a simple well known similarity solution for the shell expansion, a stellar population synthesis code, and a time-dependent PDR chemistry model. The SEDs for several molecular and atomic lines ($^{12}$CO and its isotope $^{13}$CO, HCN, HCO$^+$, C, O, and C$^+$) are computed using a non-local thermodynamic equilibrium (non-LTE) line radiative transfer model. By comparing our models with the available observed data of nearby infrared bright galaxies, especially M 82, we constrain the models and in the case of M 82, provide estimates for the age of the recent starburst activity. We also derive the total H$_2$ gas mass in the measured regions of the central 1 kpc starburst disk of M 82. In addition, we apply the model to represent various stages of starburst evolution in a well known sample of nearby luminous infrared galaxies (LIRGs). In this way, we interpret the relationship between the degree of molecular excitation and ratio of FIR to CO luminosity to possibly reflect different stages of the evolution of star-forming activity within their nuclear regions. We conclude with an assessment of the strengths and weaknesses of this approach to dating starbursts, and suggest future work for improving the model.

Page generated in 0.0272 seconds