281 |
Využití umělých neuronových sítí pro řešení úloh kombinatorické optimalizace / Using artificial neural networks to solve problems in combinatorial optimizationDvořák, Marek January 2014 (has links)
This thesis discusses combinatorial optimization problems, its characteristics and solving methods. Different types of such problems are presented here and I hint at solution using classical heuristical algorithms. In the next part, I focus on artificial neural networks, their description and classification. In the last part, I'm comparing two neural network approaches for solving a travelling salesman problem on several examples.
|
282 |
Um algoritmo eficiente para o problema do posicionamento natural de antenas / An efficient algorithm for the natural wireless localization problemCrepaldi, Bruno Espinosa, 1991- 26 August 2018 (has links)
Orientadores: Cid Carvalho de Souza, Pedro Jussieu de Rezende / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-26T19:18:58Z (GMT). No. of bitstreams: 1
Crepaldi_BrunoEspinosa_M.pdf: 13275684 bytes, checksum: aa236e6a56dd7ed5507276017c51b8fb (MD5)
Previous issue date: 2014 / Resumo: Considerado uma variação do problema da galeria de arte, o problema do posicionamento de antenas trata do posicionamento do menor número de antenas requerido para determinar se uma pessoa está dentro ou fora da galeria. Uma antena propaga uma chave única dentro de um ângulo específico de transmissão, de modo que o conjunto de chaves recebidas em um dado ponto do plano seja suficiente para decidir se ele pertence ou não ao polígono que representa a galeria. Para verificar esta propriedade de localização, uma fórmula Booleana deve ser produzida junto com o posicionamento de antenas. Dizemos que as antenas estão em posição natural se elas estão localizadas nos vértices ou nas arestas do polígono e transmitindo sinal no ângulo formado pelos lados deste último no ponto onde a antena está posicionada. O problema do posicionamento natural de antenas é NP-difícil. Nesta dissertação, apresentamos um algoritmo exato para resolvê-lo. Para tanto, propomos um modelo inicial de programação linear inteira para o problema que, ao ser computado por um resolvedor comercial, se mostrou capaz de encontrar soluções ótimas de instâncias correspondentes a polígonos com algumas dezenas de vértices. Em seguida, através de estudos de propriedades geométricas, são introduzidas várias melhorias no modelo matemático e também na forma de computá-lo. Como consequência desta pesquisa, desenvolvemos um algoritmo iterativo baseado em programação linear inteira com o qual conseguimos solucionar o problema para instâncias consideravelmente maiores. A eficiência do nosso algoritmo é certificada por resultados experimentais que compreendem as soluções ótimas de 720 instâncias de até 1000 vértices, incluindo polígono com buracos, as quais foram calculadas em menos de seis minutos em um computador desktop padrão / Abstract: Considered a variation of the art gallery problem, the wireless localization problem deals with the placement of the smallest number of broadcasting antennas required to determine if someone is inside or outside the gallery. Each antenna propagates a unique key within a certain antenna-specific angle of broadcast, so that the set of keys received at any given point is sufficient to determine whether that point is inside or outside the polygon that represents the gallery. To ascertain this localization property, a Boolean formula must be produced along with the placement of the antennas. We say that the antennas are in natural position if they are located at the vertices or the edges of the polygon and transmitting their signals in the angle formed by the sides of the polygon at the point where the antenna is positioned. The natural wireless localization problem is NP-hard. In this dissertation, we present an exact algorithm to solve it. To this end, we propose an initial integer linear programming model for the problem that, after being computed by a commercial solver, proved to be capable of finding optimal solutions for instances corresponding to polygons with tens of vertices. Then, through studies of geometric properties, several improvements are introduced in the mathematical model and also in the way of computing it. As a result of this research, we develop an iterative algorithm based on integer linear programming with which we can solve the problem for considerably larger instances. The efficiency of our algorithm is certified by experimental results comprising the solutions of 720 instances, including polygon with holes with up to 1000 vertices, in less than six minutes on a standard desktop computer / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
|
283 |
Algoritmos exatos para problemas de dilatação mínima em grafos geométricos / Exact algorithms for minimum dilation problems in geometric graphsBrandt, Aléx Fernando, 1990- 26 August 2018 (has links)
Orientadores: Cid Carvalho de Souza, Pedro Jussieu de Rezende / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-26T19:27:17Z (GMT). No. of bitstreams: 1
Brandt_AlexFernando_M.pdf: 1939918 bytes, checksum: c6d9d34f314830d07dc1e49ad43ab514 (MD5)
Previous issue date: 2014 / Resumo: Seja P um conjunto de pontos no plano. O grafo geométrico de P, G(P) = (P, E), é o grafo ponderado completo cujos vértices correspondem aos pontos de P e no qual o custo de uma aresta {i, j} é dado pela distância Euclidiana entre os pontos i e j. Inicialmente, considere um problema genérico em que se quer construir uma rede com boa qualidade de conexão ligando um conjunto de locais representados por pontos no plano. Em muitas aplicações deste tipo, o problema pode ser modelado com o auxílio de um grafo geométrico. Isso ocorre quando, por exemplo, para um par de pontos, a medida de qualidade é definida como a razão entre o comprimento do menor caminho que os conecta na rede projetada e a respectiva distância Euclidiana. Esta razão determina a dilatação daquele par de pontos na rede. Já a dilatação da rede construída em si é dada pela dilatação máxima sobre todos os pares de pontos. Nesta dissertação apresentamos métodos exatos para resolução dos problemas dedicados a encontrar uma árvore geradora ou uma triangulação planar de dilatação mínima, denominados, respectivamente, Problema da Árvore Geradora de Dilatação Mínima (MDSTP) e Problema da Triangulação de Dilatação Mínima (MDTP). Os métodos descritos são compostos principalmente pela formulação, redução e resolução de programas lineares inteiros mistos. A redução do tamanho destes modelos matemáticos é feita explorando-se a geometria dos problemas por meio de rotinas que determinam a presença ou da ausência de certos elementos da formulação em soluções com dilatação menor ou igual ao limitante primal fornecido por uma heurística. A aplicação destas rotinas em uma fase de pré-processamento permite uma redução significativa do tamanho do modelo levando à aceleração do seu tempo de resolução. Com a combinação destas técnicas obteve-se, pela primeira vez, soluções comprovadamente ótimas de instâncias até 20 pontos para o MDSTP e até 70 pontos para o MDTP. Os problemas e suas formulações, bem como suas formas de redução e de resolução, são apresentados em detalhes. Além disso, são feitas análises de desempenho computacional não só dos métodos exatos, mas também de algoritmos propostas por outros autores / Abstract: Let P be a set of points in the plane. The geometric graph of P, G(P) =(P, E), is the complete weighted graph whose vertices correspond to the points of P and in which the cost of an edge {i, j} is given by the Euclidean distance between the points i and j. Initially, consider a general problem where one wants to build a network with good connection quality joining a set of sites represented by points in the plane. In many applications of this kind, the problem can be modeled with the aid of a geometric graph. This occurs when, for example, for a pair of points, the quality measure is defined as the ratio of the length of the shortest path that connects them in the designed network and their Euclidean distance. This ratio determines the dilation of that pair of points in the network. On the other hand, the dilation of the built network itself is given by the maximum dilation over all pair of points. In this dissertation we present exact methods for solving problems dedicated to finding a spanning tree or a planar triangulation of minimum dilation, named, respectively, the Minimum Dilation Spanning Tree Problem (MDSTP) and Minimum Dilation Triangulation Problem (MDTP). The described methods are composed primarily by the formulation, downsizing and resolution of mixed integer linear programs. The downsizing of these mathematical models is done by exploiting the geometry of the problems by means of routines that determine the need of the presence or the absence of certain elements of the formulation in solutions with dilation less than or equal to the primal bound supplied by a heuristic. Applying these routines in a pre-processing phase allows a significant reduction of the model size leading to the acceleration of its resolution time. With the combination of these techniques, for the first time, proven optimal solutions of instances with up to 20 points for the MDSTP and up to 70 points to the MDTP were obtained. The problems and their formulations, as well as ways of reducing and solving them, are presented in detail. Furthermore, analyzes of computational performance not only of the exact methods, but also of algorithms proposed by other authors are made / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
|
284 |
Evolutionary algorithms for some problems in telecommunications = Algoritmos evolutivos para alguns problemas em telecomunicações / Algoritmos evolutivos para alguns problemas em telecomunicaçõesAndrade, Carlos Eduardo de, 1981- 03 May 2015 (has links)
Orientadores: Flavio Keidi Miyazawa, Mauricio Guilherme de Carvalho Resende / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-27T21:53:09Z (GMT). No. of bitstreams: 1
Andrade_CarlosEduardode_D.pdf: 4654702 bytes, checksum: 566cb3ea8fc876147ffa6df2ec8482b3 (MD5)
Previous issue date: 2015 / Resumo: Nos últimos anos, as redes de telecomunicação tem experienciado um grande aumento no fluxo de dados. Desde a utilização massiva de vídeo sob demanda até o incontável número de dispositivos móveis trocando texto e vídeo, o tráfego alcançou uma escala capaz de superar a capacidade das redes atuais. Portanto, as companhias de telecomunicação ao redor do mundo tem sido forçadas a aumentar a capacidade de suas redes para servir esta crescente demanda. Como o custo de instalar uma infraestrutura de rede é geralmente muito grande, o projeto de redes usa fortemente ferramentas de otimização para manter os custos tão baixos quanto possível. Nesta tese, nós analisamos vários aspectos do projeto e implementação de redes de telecomunicação. Primeiramente, nós apresentamos um novo problema de projeto de redes usado para servir demandas sem fio de dispositivos móveis e rotear tal tráfego para a rede principal. Tais redes de acesso são baseadas em tecnologias sem fio modernos como Wi-Fi, LTE e HSPA. Este problema consideramos várias restrições reais e é difícil de ser resolvido. Nós estudamos casos reais nas vizinhanças de uma grande cidade nos Estados Unidos. Em seguida, nós apresentamos uma variação do problema de localização de hubs usado para modelar as redes principais (backbones ou laços centrais). Este problema também pode ser utilizado para modelar redes de transporte de cargas e passageiros. Nós também estudamos o problema de clusterização correlacionada com sobreposições usado para modelar o comportamento dos usuários quando utilizam seus equipamentos móveis. Neste problema, nós podemos rotular um objeto usando múltiplos rótulos e analisar a conexão entre eles. Este problema é adequado para análise de mobilidade de equipamentos que pode ser usada para estimar o tráfego em uma dada região. E finalmente, nós analisamos o licenciamento de espectro sobre uma perspectiva governamental. Nestes casos, uma agência do governo deseja vender licenças para companhias de telecomunicação para que operem em uma dada faixa de espectro. Este processo usualmente é conduzido usando leilões combinatoriais. Para todos problemas, nós propomos algoritmos genéticos de chaves aleatórias viciadas e modelos de programação linear inteira mista para resolvê-los (exceto para o problema de clusterização correlacionada com sobreposição, devido sua natureza não-linear). Os algoritmos que propusemos foram capazes de superar algoritmos do estado da arte para todos problemas / Abstract: Cutting and packing problems are common problems that occur in many industry and business process. Their optimized resolution leads to great profits in several sectors. A common problem, that occur in textil and paper industries, is to cut a strip of some material to obtain several small items, using the minimum length of material. This problem, known by Two Dimensional Strip Packing Problem (2SP), is a hard combinatorial optimization problem. In this work, we present an exact algorithm to 2SP, restricted to two staged cuts (known by Two Dimensional Level Strip Packing, 2LSP). The algorithm uses the branch-and-price technique, and heuristics based on approximation algorithms to obtain upper bounds. The algorithm obtained optimal or almost optimal for small and moderate sized instances / Abstract: In last twenty years, telecommunication networks have experienced a huge increase in data utilization. From massive on-demand video to uncountable mobile devices exchanging text and video, traffic reached scales that overcame the network capacities. Therefore, telecommunication companies around the world have been forced to increase their capacity to serve this increasing demand. As the cost to deploy network infrastructure is usually very large, the design of a network heavily uses optimization tools to keep costs as low as possible. In this thesis, we analyze several aspects of the design and deployment of communication networks. First, we present a new network design problem used to serve wireless demands from mobile devices and route the traffic to the core network. Such access networks are based on modern wireless access technologies such as Wi-Fi, LTE, and HSPA. This problem has several real world constraints and it is hard to solve. We study real cases of the vicinity of a large city in the United States. Following, we present a variation of the hub-location problem used to model these core networks. Such problem is also suitable to model transportation networks. We also study the overlapping correlation clustering problem used to model the user's behavior when using their mobile devices. In such problem, one can label an object with multiple labels and analyzes the connections between them. Although this problem is very generic, it is suitable to analyze device mobility which can be used to estimate traffic in geographical regions. Finally, we analyze spectrum licensing from a governmental perspective. In these cases, a governmental agency wants to sell rights for telecommunication companies to operate over a given spectrum range. This process usually is conducted using combinatorial auctions. For all problems we propose biased random-key genetic algorithms and mixed integer linear programming models (except in the case of the overlapping correlation clustering problem due its non-linear nature). Our algorithms were able to overcome the state of the art algorithms for all problems / Doutorado / Ciência da Computação / Doutor em Ciência da Computação
|
285 |
Minimização de funções submodulares / Submodular Function MinimizationJuliana Barby Simão 09 June 2009 (has links)
Funções submodulares aparecem naturalmente em diversas áreas, tais como probabilidade, geometria e otimização combinatória. Pode-se dizer que o papel desempenhado por essas funções em otimização discreta é similar ao desempenhado por convexidade em otimização contínua. Com efeito, muitos problemas em otimização combinatória podem ser formulados como um problema de minimizar uma função submodular sobre um conjunto apropriado. Além disso, submodularidade está presente em vários teoremas ou problemas combinatórios e freqüentemente desempenha um papel essencial em uma demonstração ou na eficiência de um algoritmo. Nesta dissertação, estudamos aspectos estruturais e algorítmicos de funções submodulares, com ênfase nos recentes avanços em algoritmos combinatórios para minimização dessas funções. Descrevemos com detalhes os primeiros algoritmos combinatórios e fortemente polinomiais para esse propósito, devidos a Schrijver e Iwata, Fleischer e Fujishige, além de algumas outras extensões. Aplicações de submodularidade em otimização combinatória também estão presentes neste trabalho. / Submodular functions arise naturally in various fields, including probability, geometry and combinatorial optimization. The role assumed by these functions in discrete optimization is similar to that played by convexity in continuous optimization. Indeed, we can state many problems in combinatorial optimization as a problem of minimizing a submodular function over an appropriate set. Moreover, submodularity appears in many combinatorial theorems or problems and frequently plays an essencial role in a proof or an algorithm. In this dissertation, we study structural and algorithmic aspects of submodular functions. In particular, we focus on the recent advances in combinatorial algorithms for submodular function minimization. We describe in detail the first combinatorial strongly polynomial-time algorithms for this purpose, due to Schrijver and Iwata, Fleischer, and Fujishige, as well as some extensions. Some applications of submodularity in combinatorial optimization are also included in this work.
|
286 |
Problema da árvore geradora de comunicação ótima: variantes, complexidade e aproximação / Optimum communication spanning tree problem: variants, complexity and approximationSantiago Valdes Ravelo 18 February 2016 (has links)
O problema da árvore geradora de comunicação ótima recebe um grafo com comprimentos não negativos nas arestas e um requerimento não negativo entre cada par de vértices; sendo o objetivo encontrar uma árvore geradora do grafo que minimize o custo de comunicação, que é a soma sobre cada par de vértice da distância entre eles na árvore vezes o requerimento entre eles. Este problema é NP-difícil, assim como vários casos particulares dele. Neste trabalho estudamos algumas variantes deste problema, introduzimos novos casos particulares que são também NP-difíceis e propomos esquemas de aproximação polinomial para alguns deles. / The optimum communication spanning tree problem receives a graph with non-negative lengths over the edges and non-negative requirements for each pair of nodes; being the objective to find a spanning tree of the graph that minimizes the communication cost, which is given by the sum, over each pair of nodes, of the distance, in the tree, between the nodes multiplied by the requirement between them. This problem and several of its particular cases are NP-hard. In this work we study some of the variants, also we introduce new NP-hard particular cases of the problem and propose polynomial approximation schemes for some of them.
|
287 |
Solutions to the Chinese Postman ProblemCramm, Kenneth Peter 01 January 2000 (has links)
Considering the Chinese Postman Problem, in which a mailman must deliver mail to houses in a neighborhood. The mailman must cover each side of the street that has houses, at least once. The focus of this paper is our attempt to discover the optimal path, or the least number of times each street is walked. The integration of algorithms from graph theory and operations research form the method used to explain solutions to the Chinese Postman Problem.
|
288 |
The traveling salesman problem improving K-opt via edge cut equivalence setsHolland, Eric 01 January 2001 (has links)
The traveling salesman problem (TSP) has become a classic in the field of combinatorial optimization. Attracting computer scientists and mathematicians, the problem involves finding a minimum cost Hamiltonian cycle in a weighted graph.
|
289 |
Robust covering problems : formulations, algorithms and an application / Problème de couverture robuste : formulations, algorithmes et une applicationAlmeida Coco, Amadeu 06 October 2017 (has links)
Deux problèmes robustes d'optimisation NP-difficiles sont étudiés dans cette thèse: le problème min-max regret de couverture pondérée (min-max regret WSCP) et le problème min-max regret de couverture et localisation maximale (min-max regret MCLP). Les données incertaines dans ces problèmes sont modélisées par des intervalles et seules les valeurs minimales et maximales pour chaque intervalle sont connues. Le min-max regret WSCP a été investigué notamment dans le cadre théorique, alors que le min-max regret MCLP a des applications en logistique des catastrophes étudiées dans cette thèse. Deux autres critères d'optimisation robuste ont été dérivés pour le MCLP: le max-max MCLP et le min-max MCLP. En matière de méthodes, formulations mathématiques, algorithmes exacts et heuristiques ont été développés et appliqués aux deux problèmes. Des expérimentations computationnelles ont montré que les algorithmes exacts ont permis de résoudre efficacement 14 des 75 instances générées par le min-max regret WSCP et toutes les instances réalistes pour le min-max regret MCLP. Pour les cas simulés qui n'ont pas été résolus de manière optimale dans les deux problèmes, les heuristiques développées dans cette thèse ont trouvé des solutions aussi bien ou mieux que le meilleur algorithme exact dans presque tous les cas. En ce qui concerne l'application en logistique des catastrophes, les modèles robustes ont trouvé des solutions similaires pour les scénarios réalistes des tremblements de terre qui a eu lieu à Katmandu au Népal en 2015. Cela indique que nous avons une solution robuste / Two robust optimization NP-Hard problems are studied in this thesis: the min-max regret Weighted Set Covering Problem (min-max regret WSCP) and the min-max regret Maximal Coverage Location Problem (min-max regret MCLP). The min-max regret WSCP and min-max regret MCLP are, respectively, the robust optimization counterparts of the Set Covering Problem and of the Maximal Coverage Location Problem. The uncertain data in these problems is modeled by intervals and only the minimum and maximum values for each interval are known. However, while the min-max regret WSCP is mainly studied theoretically, the min-max regret MCLP has an application in disaster logistics which is also investigated in this thesis. Two other robust optimization criteria were derived for the MCLP: the max-max MCLP and the min-max MCLP. In terms of methods, mathematical formulations, exact algorithms and heuristics were developed and applied to both problems. Computational experiments showed that the exact algorithms efficiently solved 14 out of 75 instances generated to the min-max regret WSCP and all realistic instances created to the min-max regret MCLP. For the simulated instances that was not solved to optimally in both problems, the heuristics developed in this thesis found solutions, as good as, or better than the exact algorithms in almost all instances. Concerning the application in disaster logistics, the robust models found similar solutions for realistic scenarios of the earthquakes that hit Kathmandu, Nepal in 2015. This indicates that we have got a robust solution, according to all optimization models
|
290 |
Cloud-Radio Access Networks : design, optimization and algorithms / Cloud-Radio Access Networks : Conception, optimisation et algorithmesMharsi, Niezi 10 October 2019 (has links)
Cloud-Radio Access Network (C-RAN) est une architecture prometteuse pour faire face à l’augmentation exponentielle des demandes de trafic de données et surmonter les défis des réseaux de prochaine génération (5G). Le principe de base de CRAN consiste à diviser la station de base traditionnelle en deux entités : les unités de bande de base (BaseBand Unit, BBU) et les têtes radio distantes (Remote Radio Head, RRH) et à mettre en commun les BBUs de plusieurs stations dans des centres de données centralisés (pools de BBU). Ceci permet la réduction des coûts d’exploitation, l’amélioration de la capacité du réseau ainsi que des gains en termes d’utilisation des ressources. Pour atteindre ces objectifs, les opérateurs réseaux ont besoin d’investiguer de nouveaux algorithmes pour les problèmes d’allocation de ressources permettant ainsi de faciliter le déploiement de l’architecture C-RAN. La plupart de ces problèmes sont très complexes et donc très difficiles à résoudre. Par conséquent, nous utilisons l’optimisation combinatoire qui propose des outils puissants pour adresser ce type des problèmes.Un des principaux enjeux pour permettre le déploiement du C-RAN est de déterminer une affectation optimale des RRHs (antennes) aux centres de données centralisés (BBUs) en optimisant conjointement la latence sur le réseau de transmission fronthaul et la consommation des ressources. Nous modélisons ce problème à l’aide d’une formulation mathématique basée sur une approche de programmation linéaire en nombres entiers permettant de déterminer les stratégies optimales pour le problème d’affectation des ressources entre RRH-BBU et nous proposons également des heuristiques afin de pallier la difficulté au sens de la complexité algorithmique quand des instances larges du problème sont traitées, permettant ainsi le passage à l’échelle. Une affectation optimale des antennes aux BBUs réduit la latence de communication attendue et offre des gains en termes d’utilisation des ressources. Néanmoins, ces gains dépendent fortement de l’augmentation des niveaux d’interférence inter-cellulaire causés par la densité élevée des antennes déployées dans les réseaux C-RANs. Ainsi, nous proposons une formulation mathématique exacte basée sur les méthodes Branch-and-Cut qui consiste à consolider et ré-optimiser les rayons de couverture des antennes afin de minimiser les interférences inter-cellulaires et de garantir une couverture maximale du réseau conjointement. En plus de l’augmentation des niveaux d’interférence, la densité élevée des cellules dans le réseau CRAN augmente le nombre des fonctions BBUs ainsi que le trafic de données entre les antennes et les centres de données centralisés avec de fortes exigences en termes de latence sur le réseau fronthaul. Par conséquent, nous discutons dans la troisième partie de cette thèse comment placer d’une manière optimale les fonctions BBUs en considérant la solution split du 3GPP afin de trouver le meilleur compromis entre les avantages de la centralisation dans C-RAN et les forts besoins en latence et bande passante sur le réseau fronthaul. Nous proposons des algorithmes (exacts et heuristiques) issus de l’optimisation combinatoire afin de trouver rapidement des solutions optimales ou proches de l’optimum, même pour des instances larges du problèmes. / Cloud Radio Access Network (C-RAN) has been proposed as a promising architecture to meet the exponential growth in data traffic demands and to overcome the challenges of next generation mobile networks (5G). The main concept of C-RAN is to decouple the BaseBand Units (BBU) and the Remote Radio Heads (RRH), and place the BBUs in common edge data centers (BBU pools) for centralized processing. This gives a number of benefits in terms of cost savings, network capacity improvement and resource utilization gains. However, network operators need to investigate scalable and cost-efficient algorithms for resource allocation problems to enable and facilitate the deployment of C-RAN architecture. Most of these problems are very complex and thus very hard to solve. Hence, we use combinatorial optimization which provides powerful tools to efficiently address these problems.One of the key issues in the deployment of C-RAN is finding the optimal assignment of RRHs (or antennas) to edge data centers (BBUs) when jointly optimizing the fronthaul latency and resource consumption. We model this problem by a mathematical formulation based on an Integer Linear Programming (ILP) approach to provide the optimal strategies for the RRH-BBU assignment problem and we propose also low-complexity heuristic algorithms to rapidly reach good solutions for large problem instances. The optimal RRH-BBU assignment reduces the expected latency and offers resource utilization gains. Such gains can only be achieved when reducing the inter-cell interference caused by the dense deployment of cell sites. We propose an exact mathematical formulation based on Branch-and-Cut methods that enables to consolidate and re-optimize the antennas radii in order to jointly minimize inter-cell interference and guarantee a full network coverage in C-RAN. In addition to the increase of inter-cell interference, the high density of cells in C-RAN increases the amount of baseband processing as well as the amount of data traffic demands between antennas and centralized data centers when strong latency requirements on fronthaul network should be met. Therefore, we discuss in the third part of this thesis how to determine the optimal placement of BBU functions when considering 3GPP split option to find optimal tradeoffs between benefits of centralization in C-RAN and transport requirements. We propose exact and heuristic algorithms based on combinatorial optimization techniques to rapidly provide optimal or near-optimal solutions even for large network sizes.
|
Page generated in 0.04 seconds