• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 17
  • 8
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 99
  • 99
  • 37
  • 18
  • 17
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Nocturnal cooling : Study of heat transfer from a flat-plate solar collector

Johansson, Helena January 2008 (has links)
<p>This thesis investigates the possibility of using an unglazed flat-plate solar collector as a cooling radiator. The solar collector will be connected to the condenser of a heat pump and used as cooler during nighttime. Daytime the solar collector will be connected to the evaporator of the heat pump and used as heat source. The two widely differing fields of application make special demands on the solar collector. The task is given by the heat pump manufacturer Thermia and the main objective is to find out whether a solar collector should be used as a cooler or not. The performance of the solar collector under varying environmental conditions is investigated using COMSOL Multiphysics 3.3. Only the cooling properties are investigated here. The performance of the solar collector as a heat exchanger is estimated using the effectiveness-NTU method, and the solar collector is found to be a good heat exchanger at low wind speeds. The heat transfer coefficients of the convection and radiation are determined for varying temperature and wind speeds. The convective heat transfer coefficient is lowered by tubes above the absorber plate and for a high convective heat transfer rate the solar collector surface should be smooth. For a high radiative heat transfer rate the surface needs to have a high emissivity. The cooling rate is higher from a warm surface than from a cold and since no temperature change of the heat carrier is necessary the solar collector should be kept at a high temperature. To increase the cooling rate alterations need to be made to the solar collector that makes its heating performance deteriorate. A solar collector that can be used for cooling is not an efficient solar collector.</p>
72

2-d Modeling Of A Proton Exchange Membrane Fuel Cell

Agar, Ertan 01 February 2010 (has links) (PDF)
In this thesis, a Proton Exchange Membrane Fuel Cell is modeled with COMSOL Multiphysics software. A cross-section that is perpendicular to the flow direction is modeled in a 2-D, steady-state, one-phase and isothermal configuration. Anode, cathode and membrane are used as subdomains and serpentine flow channels define the flow field . The flow velocity is defined at the catalyst layers as boundary conditions with respect to the current density that is obtained by using an agglomerate approach at the catalyst layer with the help of fundamental electrochemical equations. Darcy&rsquo / s Law is used for modeling the porous media flow. To investigate the effects of species depletion along the flow channels, a different type of cross-section that is parallel to the flow direction is modeled by adding flow channels as a subdomain to the anode and cathode. Differently, Brinkman Equations are used to define flow in the porous electrodes and the free flow in the channels is modeled with Navier-Stokes equations. By running parallel-to-flow model, mass fractions of species at three different locations (the inlet, the center and the exit of the channel) are predicted for different cell po- tentials. These mass fractions are used as inputs to the perpendicular-to-flow model to obtain performance curves. Finally, by maintaining restricted amount of species by having a very low pressure difference along the channel to represent a single mid-cell of a fuel cell stack, a species depletion problem is detected. If the cell potential is decreased beyond a critical value, this phenomenon causes dead places at which the reaction does not take place. Therefore, at these dead places the current density goes to zero unexpectedly.
73

Nocturnal cooling : Study of heat transfer from a flat-plate solar collector

Johansson, Helena January 2008 (has links)
This thesis investigates the possibility of using an unglazed flat-plate solar collector as a cooling radiator. The solar collector will be connected to the condenser of a heat pump and used as cooler during nighttime. Daytime the solar collector will be connected to the evaporator of the heat pump and used as heat source. The two widely differing fields of application make special demands on the solar collector. The task is given by the heat pump manufacturer Thermia and the main objective is to find out whether a solar collector should be used as a cooler or not. The performance of the solar collector under varying environmental conditions is investigated using COMSOL Multiphysics 3.3. Only the cooling properties are investigated here. The performance of the solar collector as a heat exchanger is estimated using the effectiveness-NTU method, and the solar collector is found to be a good heat exchanger at low wind speeds. The heat transfer coefficients of the convection and radiation are determined for varying temperature and wind speeds. The convective heat transfer coefficient is lowered by tubes above the absorber plate and for a high convective heat transfer rate the solar collector surface should be smooth. For a high radiative heat transfer rate the surface needs to have a high emissivity. The cooling rate is higher from a warm surface than from a cold and since no temperature change of the heat carrier is necessary the solar collector should be kept at a high temperature. To increase the cooling rate alterations need to be made to the solar collector that makes its heating performance deteriorate. A solar collector that can be used for cooling is not an efficient solar collector.
74

Novel diagnostic microarray assay formats towards comprehensive on-site analysis

Gantelius, Jesper January 2009 (has links)
Advances in molecular methods for analyzing DNA, RNA and proteins in humans as well as in other animals, plants, fungi, bacteria or viruses have greatly increased the resolution with which we can study life’s complexity and dynamics on earth. While genomic, transcriptomic and proteomic laboratory tools for molecular diagnosis of disease are rapidly becoming more comprehensive, the access to such advanced yet often expensive and centralized procedures is limited. There is a great need for rapid and comprehensive diagnostic methods in low-resource settings or contexts where a person can not or will not go to a hospital or medical laboratory, yet where a clinical analysis is urgent. In this thesis, results from development and characterization of novel technologies for DNA and protein microarray analysis are presented. Emphasis is on methods that could provide rapid, cost-effective and portable analysis with convenient readout and retained diagnostic accuracy. The first study presents a magnetic bead-based approach for DNA microarray analysis for a rapid visual detection of single nucleotide polymorphisms. In the second work, magnetic beads were used as detection reagents for rapid differential detection of presence of pestiviral family members using a DNA oligonucleotide microarray with read-out by means of a tabletop scanner or a digital camera. In paper three, autoimmune responses from human sera were detected on a protein autoantigen microarray, again by means of magnetic bead analysis. Here, special emphasis was made in comprehensively comparing the performance of the magnetic bead detection to common fluorescence-based detection. In the fourth study, an immunochromatographic lateral flow protein microarray assay is presented for application in the classification of contagious pleuropneumonia from bovine serum samples. The analysis could be performed within 10 minutes using a table top scanner, and the performance of the assay was shown to be comparable to that of a cocktail ELISA. In the fifth paper, the lateral flow microarray framework is investigated in further detail by means of experiments and numerical simulation. It was found that downstream effects play an important role, and the results further suggest that the downstream binding profiles may find use in simple affinity evaluation. / QC 20100713
75

Modelovn­ kmitoÄtovÄ selektivn­ch povrch v programu COMSOL Multiphysics / Modeling frequency selective surfaces in COMSOL Multiphysics

H¶hn, Tom January 2008 (has links)
Metoda koneÄnch prvk implementovan v programu COMSOL Multiphysics je vyu­vna k analze tzv. free-standing kmitoÄtovÄ selektivn­ch povrch ve 3D. Tyto modely jsou nslednÄ doplnÄny o periodick© okrajov© podm­nky. Dle jsou free-standing povrchy doplnÄny o vrstvy dielektrika a je zkoumn jejich vliv na modul Äinitele odrazu. V analytick© Ästi jsou vyhodnoceny vlivy poÄtu element diskretizaÄn­ m­ky na pesnost vsledku a d©lku vpoÄt. Vsledky jsou srovnvny vzhledem k vsledkm uvedenm v literatue [5]. V zvÄreÄn© Ästi prce je vysvÄtlen postup pi generovn­ m-file pro obd©ln­kov element a pouit­ globln­ho optimalizaÄn­ho algoritmu PSO, kter automaticky upravuje rozmÄry vodiv©ho motivu tak, aby bylo dosaeno prbÄhu modulu Äinitele odrazu podle poadovan©ho prbÄhu.
76

Modelování vlnovodů metodou konečných prvků v časové oblasti / Modeling waveguides by time-domain finite elements

Fasora, Pavel January 2009 (has links)
The thesis deals with frequency domain finite elements and time domain finite elements. Derivation of the wave equation, generation of the discretization mesh and the composition of matrices for solving wave equation are presented. Exploitation of COMSOL Multiphysics for the analysis of the electromagnetic wave propagation in a wave guide is explained. Finally, in this thesis is described the m-file of MATLAB for analyzing electric field intensity of the waveguide in longitudinal direction to both domain. In last part is concisely exposed perfect match layers.
77

Modelování elektromagnetických polí v biologoických tkáních / Electromagnetic field mapping in biological tissues

Bereznanin, Martin January 2010 (has links)
The main objective of this study is to learn about the theory of electromagnetic field and to create a model of propagation of ultra short waves in a biological tissue. Next point of this paper is to determine a specific absorption rate (SAR) using a valid sanitary standard. A particular model solution was realized in a model environment of the program Comsol Multiphysics 3.5. A human head and a cellular phone with an intern antenna were successfully created in this model environment. First of all were entered appropriate parameters which led to a successful representation of the distribution of electric field intensity. A value of specific absorption rate taken by a biological tissue was determined in the next step. This value was compared to the value listed in a valid sanitary standard to prevent its overrun. A development of a temperature in a biological tissue was determined as well, according to a six minutes long interval stated in a valid sanitary standard.
78

Počítačové modelování MOSFET tranzistoru / Computer modeling of MOSFET transistor

Major, Jan January 2011 (has links)
Work is focused on computer modeling of PN junction and MOSFET transistor in the program COMSOL Multiphysics and in program TiberCAD. The text is discussed on the drift and diffusion in semiconductors. Also shown is a method of modeling the PN junction and MOSFET transistor in the programs and compare models.
79

Micromechanical modelling of creep in wooden materials

Falkeström, Oskar, Coleman, Kevin, Nilsson, Malin January 2021 (has links)
Wood is a complex organic orthotropic viscoelastic material with acellular structure. When stressed, wood will deform over timethrough a process called creep. Creep affects all wooden structureand can be difficult, time-consuming and expensive to measure. For this thesis, a simple computer model of the woodenmicrostructure was developed. The hypothesis was that the modelledmicrostructure would display similar elastic and viscoelasticproperties as the macroscopic material. The model was designed by finding research with cell geometries ofconiferous trees measured. The model considered late- and earlywoodgeometries as well as growth rings. Rays were ignored as they onlycomposed 5-10% of the material. By applying a finite element method, the heterogeneous late- andearlywood cells could be homogenized by sequentially loading thestrain vector and calculating the average stress. The computer model produced stiff but acceptable values for theelastic properties. Using the standard linear solid method to modelviscoelasticity, the computer model assembled creep curvescomparable to experimental results. With the model sufficiently validated, parametric studies on thecell geometry showed that the elastic and viscoelastic propertieschanged greatly with cell shape. An unconventional RVE was alsotested and shown to give identical result to the standard RVE. Although not perfect, the model can to a certain degree predict theelastic and viscoelastic characteristics for wood given itscellular geometry. Inaccuracies were thought to be caused byassumptions and approximations when building the model.
80

Scanning Probe Microscopy Measurements and Simulations of Traps and Schottky Barrier Heights of Gallium Nitride and Gallium Oxide

Galiano, Kevin 07 October 2020 (has links)
No description available.

Page generated in 0.044 seconds