• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 18
  • 9
  • 8
  • 2
  • 2
  • 1
  • Tagged with
  • 83
  • 83
  • 83
  • 23
  • 20
  • 19
  • 19
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Development and Validation of Quantitative PCR Assays for DNA-Based Newborn Screening of 22q11.2 Deletion Syndrome, Spinal Muscular Atrophy, Severe Combined Immunodeficiency and Congenital Cytomegalovirus Infection

Theriault, Mylene A. January 2013 (has links)
The development of new high throughput technologies able to multiplex disease biomarkers as well as advances in medical treatments has lead to the recent expansion of the newborn screening panel to include DNA-based targets. Four rare disorders; deletion 22q11.2 syndrome and Spinal Muscular Atrophy (SMA), Severe Combined Immunodeficiency (SCID) and Congenital Cytomegalovirus (CMV), are potential candidates for inclusion to the newborn screening panel within the next few years. The major focus of this study was to determine whether 5’-hydrolysis assays developed for the four distinct disorders with specific detection needs and analytical ranges could be combined on the OpenArray system and in multiplexed qPCR reactions. SNP detection of homozygous SMN1 deletions in SMA, CNV detection in the 22q11.2 critical region, and quantification of the SCID biomarker, T-cell receptor excision circles (TRECs) and CMV were all required for disease confirmation. SMA and 22q11.2 gene deletions were accurately detected using the OpenArray system, a first for the technology. The medium density deletion 22q11.2 multiplex successfully identified deletion carriers having either the larger 3 Mb deletion or the smaller 1.5 Mb deletions. Both TREC and CMV targets were detected but with a decrease in sensitivity when compared to their singleplex counterparts. Lastly, copy number detection of the TBX1 was performed when multiplexed with the TREC assay, without a decrease in detection limit of either assay. Here, we provide proof of principal that qPCR multiplexing technologies are amenable to implementation with a newborn screening laboratory.
82

Detecting structural variants in the DNA of the inbred Scandinavian wolf

Huson, Lars January 2023 (has links)
Only 40 years ago, just three individuals made the journey from Finland/Russia to found the current wolf population in the southwest of Sweden. This population, that to this date descends from less than 10 founders, has a substantial increased extinction risk due to inbreeding. Several previous studies have used SNPs to monitor the level of inbreeding and homozygosity in the population, as well as measure immigration and the inflow of new genetic material. This study uses both short- and long-read data to discover structural variants (SVs) and small indels in the population, so that they may be used to extend the analyses and provide more insight into the current state of the Scandinavian wolf population. After the calling of the SVs, strict filtering and manual curation were applied to the data, thereby removing many false positive calls and increasing confidence in the remaining SVs. Short-read and long-read SV-callers found 31,800 and 57,821 SVs respectively, with relatively little overlap between the two sets. By far, the most common SV-types were deletions and insertions, at about 30,000 each with varying length ranging from a 50 base pairs to several tens of Mbp. Analyses on the data, such as PCAs and parent-offspring trio analyses, reveal high-confidence calls and consistent results between SV-types and SV-callers, as well as a low estimated genotyping error rate. PCAs performed on the SVs resembled those performed on SNPs, which strengthens the credibility of the identified variants. Finally, this study suggests several alternative steps for possible improvement to the dataset, along with some proposals for subsequent research topics that may use the variants discovered in this study.
83

ROLE OF GENOMIC COPY NUMBER VARIATION IN ALZHEIMER'S DISEASE AND MILD COGNITIVE IMPAIRMENT

Swaminathan, Shanker 14 February 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alzheimer's disease (AD) is the most common form of dementia defined by loss in memory and cognitive abilities severe enough to interfere significantly with daily life activities. Amnestic mild cognitive impairment (MCI) is a clinical condition in which an individual has memory deficits not normal for the individual's age, but not severe enough to interfere significantly with daily functioning. Every year, approximately 10-15% of individuals with MCI will progress to dementia. Currently, there is no treatment to slow or halt AD progression, but research studies are being conducted to identify causes that can lead to its earlier diagnosis and treatment. Genetic variation plays a key role in the development of AD, but not all genetic factors associated with the disease have been identified. Copy number variants (CNVs), a form of genetic variation, are DNA regions that have added genetic material (duplications) or loss of genetic material (deletions). The regions may overlap one or more genes possibly affecting their function. CNVs have been shown to play a role in certain diseases. At the start of this work, only one published study had examined CNVs in late-onset AD and none had examined MCI. In order to determine the possible involvement of CNVs in AD and MCI susceptibility, genome-wide CNV analyses were performed in participants from three cohorts: the ADNI cohort, the NIA-LOAD/NCRAD Family Study cohort, and a unique cohort of clinically characterized and neuropathologically verified individuals. Only participants with DNA samples extracted from blood/brain tissue were included in the analyses. CNV calls were generated using genome-wide array data available on these samples. After detailed quality review, case (AD and/or MCI)/control association analyses including candidate gene and genome-wide approaches were performed. Although no excess CNV burden was observed in cases compared to controls in the three cohorts, gene-based association analyses identified a number of genes including the AD candidate genes CHRFAM7A, RELN and DOPEY2. Thus, the present work highlights the possible role of CNVs in AD and MCI susceptibility warranting further investigation. Future work will include replication of the findings in independent samples and confirmation by molecular validation experiments.

Page generated in 0.0458 seconds