• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 26
  • 13
  • 11
  • 9
  • 7
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 207
  • 168
  • 46
  • 41
  • 38
  • 34
  • 33
  • 30
  • 26
  • 26
  • 22
  • 20
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Contrôle du développement du prosencéphale et du mésencéphale par la crête neurale cephalique : régulation de l’expression de Foxg1 par les voies de signalisation Wnt et Bmp / The cephalic neural crest controls fore- and midbrain pattering by regulating Foxg1 activity through Bmp and Wnt modulators / Controle do desenvolvimento do prosencéfalo e mesencéfalo pela crista neural cefálica : regulação de Foxg1 pelas vias de sinalização Bmp e Wnt

Pinheiro Aguiar, Diego 23 April 2012 (has links)
La crête neurale crâniale (CNC) est une structure transitoire et pluripotente de l’embryon des Vertébrés qui génère la totalité du squelette de la face et de la voûte crânienne et fournit les méninges et une vascularisation fonctionnelle au cerveau antérieur. Précocement, la CNC contrôle également la croissance du cerveau. Pour identifier les mécanismes par lesquels la CNC exerce son rôle trophique sur le cerveau, nous nous sommes intéressés à l’expression du gène Smad1, qui transduit divers voies de signalisation, et est massivement exprimé par les cellules de la CNC juste avant leur migration. L’inactivation de Smad1 par l'interférence ARN dans les CCN conduit à une microcéphalie sévère et une holoprosencéphalie partielle, qui résulte de la perte de l’expression de Fgf8 et Foxg1. Les expériences de sauvetage montrent que les cellules de la CNC régulent positivement Foxg1 indépendamment de Fgf8. De plus, nous montrons que la perte de fonction de Foxg1 dans le télencéphale affecte le développement du thalamus et du toit optique en dérégulant l’expression de Otx2 et de Foxa2 à leur niveau. Nous avons identifié les molécules médiatrices produites par les cellules de la CNC nécessaire au contrôle de l’expression de Foxg1. Nous montrons que les antagonsites de Bmp and Wnt, Noggin, Gremlin et Dkk1 sont indispensable pour initier la spécification du télencéphale. De plus, la régionalisation moléculaire des territoires télencephalique et di/mésencéphalique, requiert l’activité conjointe de Sfrp1 et Sfrp2, d’une part, et de Cerberus, d’autre part. L’ensemble des données acquises au cours de ces travaux documente les mécanismes moléculaires par lesquels la CNC participe de façon essentielle à la régionalisation moléculaire du cerveau des Vertébrés. / The cranial NC (CNC) is a transient structure of the vertebrate embryo, which is essential for brain ontogenesis and provides the developing brain with a skeletal and meningeal protection and functional vasculature. Early in development, CNC cells also control morphogenetic activities of brain organizers and stimulate the growth of prosencephalic alar plate. To understand how CNC conveys its trophic effect on the telencephalon, we have silenced the gene encoding for Smad1, a transcription factor expressed in the CNC cells, which transduces diverse morphogenetic pathways. Smad1 silencing results in microcephaly and partial holoprosencephaly, which early coincide with the loss of Fgf8 and Foxg1 in the telencephalon. Rescue experiments show that CNC cells can positively regulate Foxg1 expression independently of Fgf8 activity in the prosencephalic organizer. Furthermore, the depletion of Foxg1 activity in the telencephalon alters Otx2 and Foxa2 expression in the thalamus and tectum. We have identified the mediators produced by the CNC to control Foxg1 activity and showed that Bmp and Wnt antagonists, Noggin, Gremlin and Dkk1 initiate the specification of the telencephalon. Additionally, the molecular patterning of the telencephalic and di/mesencephalic compartments requires the activity of Sfrp1 and Sfrp2, and Cerberus, respectively. Altogether, we show that CNC cells controls brain patterning by regulating Foxg1 expression through a network of morphogen modulators controlled by Smad1 activity. / A crista neural cranial (CNC) é uma estrutura transiente em embriões de vertebrado, que possui um papel crucial no desenvolvimento da cabeça. A CNC é uma importante fonte de derivados mesenquimais. Recentes descobertas mostraram que as células da CNC possuem uma atividade trófica no desenvolvimento do tubo neural anterior, estimulando e organizando o desenvolvimento prosencefálico em oposição à sinalização Bmp presente nos tecidos adjacentes. Com o objetivo de entender como as células da CNC controlam a atividade de morfógenos durante o desenvolvimento do cérebro. Nós focamos nossos estudos no fator de transcrição Smad1, expresso pelas células da CNC, que controla a transcrição de Noggin. Noggin é um antagonista de Bmp que por sua vez controla a atividade de sua via de sinalização. Além disso, Smad1 interage com outras vias de sinalização com Fgf8 e Wnt. Para testar o papel de Smad1 nas células da CNC, nós eletroporamos o RNA dupla fita de Smad1 (dsSmad1) nas células da CNC em embriões de galinha no estágio de 4 somitos com a finalidade de bloquear sua tradução. Estes espécimes foram analisados em estágio mais avançados do desenvolvimento embrionário. A perda de função de Smad1 compromete o desenvolvimento das vesículas cefálicas, nos estágios de 26 somitos, E4, E6 e E8. Em cortes histológicos em E8, observou-se o aumento do volume ventral do cérebro destes embriões. Com o objetivo de entender como Smad1 controla o desenvolvimento das vesículas cefálicas, embriões no estágio de 26ss foram analisado por hibridização in situ. Nós observamos em embriões dsSmad1 a diminuição da expressão de Fgf8 na borda neural anterior e a completa ausência de expressão de Foxg1 no neuroectoderma prosencéfalico. A falta de Smad1, também gera a diminuição da expressão de Otx2 nos limites ventrais e laterais do telencéfalo, diencéfalo e mesencéfalo. Em contrapartida, nestes embriões observa-se o aumento da zona de expressão de Foxa2 na porção ventral do diencéfalo e mesencéfalo. O bloqueio de Smad1 também acarreta no aumento dos níveis de Dkk1, que é um importante inibidor da via de sinalização Wnt. Com o intuito de entender o mecanismo sobre o controle de Smad1, nós aumentamos os níveis de transcritos nas células da CNC de Dkk1. Como resultado deste aumento, observamos as mesmas modificações nos níveis dos transcritos de Fgf8, Foxg1, Otx2 e Foxa2. Interessantemente os efeitos do excesso de Dkk1 podem ser revertidos com a co-eletroporação do Smad1 constitutivamente fosforilada. Nós também analisamos a expressão de Foxg1 e Otx2 em embriões privados de Cubilin nas células da CNC. Estes embriões apresentam o mesmo padrão de expressão encontrados nos embriões dsSmad1. Interessantemente os nocautes para Cubilin apresentam diminuição da fosforilação de Smad1. Nossos resultados mostram que a presença de Smad1 nas células da CNC é extremamente importante para padronização e desenvolvimento do cérebro. Smad1 nas células da CNC funciona como um regulador da via de Bmp, através do controle transcricional de Noggin impedindo que o excesso de Bmp chegue até o tubo neural. Sendo assim, Smad1 controla o excesso de Bmp permitindo a indução e o desenvolvimento da região anterior por Fgf8.
42

Mesenchymal potentials of the trunk neural crest cells / Les potentiels mésenchymataux de la crête neurale troncale

De Mattos Coelho Aguiar, Juliana 24 April 2012 (has links)
La crête neurale (CN) dérive de la partie dorsale du tube neural des Vertébrés. Pendant le développement, ces cellules migrent et contribuent à la formation de différents tissus et organes. Le long de l'axe antéro-postérieur, la CN donne naissance aux neurones et cellules gliales du système nerveux périphérique, et aux mélanocytes. Par ailleurs, la CN céphalique est aussi à l’origine de tissus mésenchymateux qui constituent tous les os et cartilages de la face, la plus grande partie du crâne, le derme facial, et les adipocytes et cellules de muscles lisses dans la tête. Dans le tronc des Vertébrés amniotes, ces tissus dérivent du mésoderme. Chez les Vertébrés inférieurs, la CN troncale génère cependant des tissus mésenchymateux, comme les rayons des nageoires du poisson-zèbre. La question qui se pose est de savoir si la capacité de la CN à produire des cellules mésenchymateuses a été totalement perdue dans le tronc au cours de l’évolution, ou bien si elle peut encore se manifester chez les Amniotes dans des conditions spécifiques. Ce travail s’est intéressé à dévoiler le potentiel mésenchymateux de la CN troncale.Notre approche expérimentale a été d'examiner le potentiel de différenciation squelettogénique et adipogénique des cellules de la CN troncale de caille en culture in vitro, par hybridation in situ (HIS), immunocytochimie et RT-PCR. L’ostéogenèse a été initialement caractérisée par l'expression de Runx2, premier facteur de transcription des ostéoprogéniteurs, qui a été détectée par HIS à partir 5 jours de culture. Plus tard, nous avons observé la maturation des ostéoblastes, avec l’expression de la protéine collagen1, des ARNm de l'ostéopontine et de la phosphatase alcaline, jusqu’à l'étape de minéralisation de la matrice osseuse. Les cellules de CN troncale ont effectué également un processus de chondrogenèse, mis en évidence par l'expression des ARNm de Sox9, aggrecan et collagène10, et par la coloration au bleu Alcian. L'observation des zones minéralisées et des régions chondrogéniques suggère que les cellules de la CN troncale in vitro effectuent une ossification de types endochondral et intramembranaire. Dans les mêmes conditions de culture, les cellules se sont aussi différenciées en adipocytes, identifiés à partir de 10 jours de culture par le colorant Oil Red O. Les ARNm des facteurs de transcription CEBP et PPAR, essentiels pour l'adipogenèse, et de la protéine FABP4, ont été détectés par RT-PCR dès 3 jours de culture. Afin de caractériser les précurseurs des cellules osseuses et adipocytaires, nous avons examiné le potentiel de différenciation des cellules individuelles de la CN troncale. L'analyse des types cellulaires dans les cultures clonales a montré que 76% des clones contiennent des ostéoblastes Runx2-positifs. De plus, les cellules de CN troncale comprennent des progéniteurs multipotents dotés à la fois de potentiels neuraux et ostéogénique. Dans une autre condition de culture clonale, les adipocytes ont été trouvés dans la descendance de 35,3% des cellules, et environ la moitié de ces cellules possédaient aussi un potentiel glial et/ou mélanogénique. Ces résultats montrent que, in vitro, les cellules de la CN troncale sont capables de se différencier non seulement dans ses dérivés traditionnels trouvés in vivo (mélanocytes, neurones et cellules gliales), mais aussi dans des phénotypes mésenchymateux, y compris adipocytes et ostéoblastes. Comme dans les cellules de la CN céphalique, ces phénotypes mésenchymateux se différencient à partir de progéniteurs multipotents. Ceci suggère que, au cours de l’évolution, les cellules souches de la CN, dotées de potentiels à la fois mésenchymateux et neuraux, ont eu l'expression de leur potentiel mésenchymateux inhibée dans le tronc. Ainsi, chez les Vertébrés amniotes, même s’il ne se manifeste pas et reste dormant in vivo, un potentiel de différenciation mésenchymateuse est bien présent dans les cellules de la CN troncale et peut être révélé in vitro. / The neural crest (NC) derives from the dorsal borders of the vertebrate neural tube. During development, the NC cells migrate and contribute to the formation of different tissues and organs. Along the anteroposterior axis, the NC gives rise to neurons and glia of the peripheral nervous system and to melanocytes. Furthermore, the cephalic NC yields mesenchymal tissues, which form all facial cartilages and bones, the large part of skull, facial dermis, fat cells and smooth muscle cells in the head. In the trunk of amniotes Vertebrates, these tissues are derived from the mesoderm, not from the NC. In lower Vertebrates, however, the trunk NC generates some mesenchymal tissues, such as in the dorsal fins of zebrafish. The question therefore is raised whether the ability of the NC to produce mesenchymal cells was totally lost in the trunk of amniote Vertebrates during evolution, or if it can still be achieved under specific conditions. This work is interested in uncovering the mesenchymal potential of the avian trunk NC, with special interest in the differentiation into osteoblasts and adipocytes.Our experimental approach was to examine the skeletogenic and adipogenic differentiation potentials of quail trunk NC cells after in vitro culture. Cell differentiation was evidenced by the analysis of lineage-specific genes and markers using in situ hybridization (ISH), immunocytochemistry and RT-PCR. The established culture conditions allowed observation of both skeletogenesis and adipogenesis. Osteogenesis was initially characterized by expression of Runx2, the first transcription factor specific of the osteoprogenitors, which was detected by ISH from 5 days of culture. Later, we observed osteoblast maturation, with the expression of collagen1 protein, osteopontin mRNA and alkaline phosphatase mRNA, until the bone matrix mineralization stage. The trunk NC cells also underwent chondrogenesis, as demonstrated by Sox9, aggrecan and collagen10 mRNA expression, and Alcian blue staining. The observation of the mineralized areas and chondrogenesis suggested that the trunk NC cells in vitro are able to perform endochondral and membranous ossifications. In same culture conditions, the cells differentiated also into adipocytes, identified from 10 days of culture by Oil Red O staining. The mRNAs of the CEBP, PPAR and FABP4 adipogenic markers were detected by RT-PCR from 3 days of culture. For the characterization of bone and adipocyte progenitors, we evaluated the differentiation potential of individual trunk NC cells. The phenotypic analysis of these clonal cultures showed that 76% of the cells generated Runx2-positive osteoblasts. Moreover, most of the clone-forming trunk NC cells were multipotent progenitors endowed with both neural and osteogenic potentials. Furthermore, in another clonal culture condition, adipocytes were found in 35.3% of the clones, and approximately half of them also contained glial and/or melanogenic cells.These results show that the trunk NC cells in vitro are able to differentiate not only in their classical derivatives found in vivo (melanocytes, neurons and glial cells), but also in mesenchymal phenotypes, including adipocytes and osteoblasts. Importantly, as in cephalic NC cells, mesenchymal phenotypes differentiated from multipotent progenitor cells, suggesting that, during evolution, the NC stem cells intended for both mesenchymal and neural fates, had the expression of their mesenchymal potential inhibited in the trunk. Thus, although at the dormant state and not expressed in vivo, a significant mesenchymal potential is present in the trunk NC cells of amniotes Vertebrates and can be disclosed in vitro
43

The distance from the contact point to the crest of the bone to predict the presence of a black triangle

Cunliffe, Joanne January 2015 (has links)
Losing interdental gingival tissue can lead to a phenomemon known as black triangles. The absence of the interdental papilla (the so called 'black triangle disease') can cause patients problems with appearance, phonetics and with the impaction of food. The gingival soft tissues form the framework and the architecture of the dentition and, in the maxillary anterior region of the mouth, play an important role in dental aesthetics. If there is any change to the shape and/or symmetry of the gingivae through developmental, pathologic or iatrogenic factors, there can be a significant and detrimental change in the appearance and balance of the natural dentition and any prosthetic tooth replacement. In this clinical research study, we find that the radiographic measurement of the distance of the contact point to the crest of the bone is a valid and reliable tool to use. This method also adds strength to predicting black triangles as the results are similar to earlier studies and the numbers used in this study was nearly twice as much.
44

Etude des mécanismes moléculaires contrôlant la prolifération des cellules de la crête neurale chez le xénope Study of the molecular mechanisms controlling neural crest cells proliferation in xenopus

Nichane, Massimo 06 November 2009 (has links)
La crête neurale (CN) est une structure transitoire apparaissant en bordure de la plaque neurale chez les embryons de vertébrés. Au cours du développement embryonnaire, les cellules de la CN prolifèrent, subissent une transition épithélio-mésenchymateuse, migrent et se différencient en de nombreux types cellulaires tels que des neurones et cellules gliales du système nerveux périphérique, des mélanocytes, des cellules musculaires lisses ou des élements du squelette cranio-facial. Afin de mieux comprendre les mécanismes moléculaires contrôlant la prolifération et la spécification des cellules de la CN, nous avons étudié le rôle de deux facteurs de transcription, Hairy2 et Stat3, via des expériences de perte et gain de fonction chez l’embryon de xénope. Le gène Hairy2 code pour un facteur de transcription bHLH-O répresseur. Il est exprimé précocement au niveau de la bordure de la plaque neurale incluant la CN présomptive. Nous avons montré que Hairy2 est requis pour la prolifération des cellules de la CN en aval de signaux FGFs et qu’il maintient les cellules dans un état indifférencié en réprimant l’expression précoce des gènes spécifiques de la CN. Hairy2 réprime aussi la transcription du gène Id3 codant pour un facteur HLH essentiel à la prolifération des cellules de la CN. Id3 affecte également Hairy2. Nous avons observé que la protéine Id3 interagit physiquement avec Hairy2 et bloque son activité, démontrant que les interactions entre Hairy2 et Id3 jouent un rôle important dans la prolifération et la spécification des cellules de la CN. Afin de comprendre le mode d’action de Hairy2 dans la CN, nous avons comparé les propriétés de la protéine Hairy2 sauvage à celle d’une version mutée de la protéine incapable de lier l’ADN. Nos résultats ont montré que Hairy2 fonctionne selon deux mécanismes distincts. La capacité de Hairy2 à promouvoir la survie et la maintenance des cellules progénitrices de la CN dans un état non spécifié et indifférencié est dépendante de sa liaison à l’ADN. A l’inverse, sa capacité à stimuler la prolifération cellulaire et l’expression des gènes spécifiques de la CN est indépendante de sa liaison à l’ADN mais nécessite l’activation du ligand du récepteur Notch, Delta1. De plus, nous avons également montré que la capacité de Hairy2 d’induire Delta1 dans la CN requiert Stat3. Le gène Stat3 code pour un facteur de transcription latent dans le cytoplasme pouvant être activé par de nombreux signaux extracellulaires. Nos résultats ont montré que Stat3 joue un rôle crucial dans la prolifération cellulaire et dans l’expression des gènes de la bordure de la plaque neurale et de la CN. Stat3 est phosphorylé directement par la voie de signalisation FGF via FGFR4 et est requis in vivo en aval de FGFR4. Nous avons aussi montré que Hairy2 et Id3 sont des régulateurs positifs et négatifs de l’activité de Stat3 qui facilite et inhibe la formation du complexe Stat3-FGFR4, respectivement. De plus, Stat3 contrôle la transcription des gènes Hairy2 et Id3 de manière dose dépendante. Nous avons observé que Hairy2 est activé à faible dose et Id3 à forte dose de Stat3, suggérant que Stat3 s’auto-régule de manière indirecte via l’activation d’une boucle de rétro-contrôle positive (Hairy2) et une négative (Id3). Stat3 régule également de manière dose dépendante la prolifération et la différenciation des cellules de la CN. Une faible activité de Stat3 stimule la prolifération cellulaire et l’expression des gènes spécifiques de la CN tandis qu’une forte activité de Stat3 ralentit le cycle cellulaire, inhibe l’expression des gènes de la CN et maintient les cellules de l’ectoderme dans un état non spécifié et indifférencié. En conclusion, nous montrons pour la première fois que Stat3, en aval des FGFs et sous le rétro-contrôle de Hairy2 et Id3, joue un rôle essentiel dans la coordination de la progression du cycle cellulaire et de la spécification de la CN au cours du développement embryonnaire du xénope.
45

Tissue specific expression studies on a vagal neural crest enhancer element of the mouse Hoxb3 gene in the development of the enteric nervous system /

Chen, Yuk-shan. January 2000 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 87-102).
46

A Sox10-GFP mutant mouse model for the study of abnormal enteric nervous system development in Hirschsprung disease

Zhang, Mei, 章梅 January 2010 (has links)
published_or_final_version / Biochemistry / Doctoral / Doctor of Philosophy
47

Neural crest cell development in the nervous system of normal gut and in Hirschsprung's disease

Fu, Ming, 付明 January 2003 (has links)
published_or_final_version / abstract / toc / Surgery / Doctoral / Doctor of Philosophy
48

Tissue specific expression studies on a vagal neural crest enhancer element of the mouse Hoxb3 gene in the development of the entericnervous system

陳玉珊, Chen, Yuk-shan. January 2000 (has links)
published_or_final_version / Biochemistry / Master / Master of Philosophy
49

Μελέτη της έκφρασης γονιδίων που επηρεάζουν τον κυτταρικό κύκλο και τη μοίρα των βλαστικών κυττάρων της νευρικής ακρολοφίας σε έμβρυα μυός απουσία της πρωτεΐνης Geminin

Νικολοπούλου, Πηνελόπη 25 May 2015 (has links)
Τα κύτταρα της νευρικής ακρολοφίας (Neural Crest Cells - NCCs) αποτελούν έναν πολυδύναμο, μεταναστευτικό πληθυσμός βλαστικών κυττάρων τα οποία δίνουν γένεση σε μια πληθώρα κυτταρικών τύπων κατά την ανάπτυξη των σπονδυλωτών, συμπεριλαμβανομένων των νευρώνων και των νευρογλοιακών κυττάρων του περιφερικού νευρικού συστήματος (ΠΝΣ). Η δημιουργία των κυττάρων της νευρικής ακρολοφίας πραγματοποιείται στο στάδιο της γαστριδίωσης μετά την επαγωγή της νευρικής πλάκας. Οι διαδικασίες αυτές επηρεάζονται από σηματοδοτικά μονοπάτια στα οποία εμπλέκονται τόσο μεταγραφικοί παράγοντες όσο και επιγενετικοί τροποποιητές . Το Εντερικό Νευρικό Σύστημα (ΕΝΣ), προέρχεται από τα κύτταρα της νευρικής ακρολοφίας της αυχενικής και της ιερής μοίρας και ελέγχει την ομαλή λειτουργία της γαστρεντερικής οδού. Τα κύτταρα της νευρικής ακρολοφίας της αυχενικής μοίρας αποικίζουν ολόκληρο τον εντερικό σωλήνα και δίνουν γένεση στο ΕΝΣ ξεκινώντας από την 9η εμβρυική ημέρα. Η δημιουργία ενός πλήρως λειτουργικού ΕΝΣ εξαρτάται από την ικανότητα μετανάστευσης, πολλαπλασιασμού και διαφοροποίησης των NCCs. Στόχος της παρούσας διπλωματικής εργασίας ήταν η μελέτη της έκφρασης γονιδίων που ελέγχουν τον πολλαπλασιασμό και τη μετανάστευση τόσο των πρόδρομων κυττάρων της νευρικής ακρολοφίας όσο και των NCCs που έχουν δεσμευτεί προς εντερική μοίρα σε έμβρυα μυός απουσία της πρωτεΐνης Geminin. Η Geminin είναι μια πρωτεΐνη που έχει δειχθεί να επηρεάζει την ισορροπία μεταξύ αυτο-ανανέωσης και διαφοροποίησης, μέσω της αλληλεπίδρασης της με μεταγραφικούς παράγοντες και πρωτεΐνες αναδιαμόρφωσης της χρωματίνης. Με σκοπό να διερευνήσουμε τον in vivo ρόλο της Geminin στα κύτταρα της νευρικής ακρολοφίας, δημιουργήσαμε διαγονιδιακούς μύες από τους οποίους αδρανοποιήσαμε το γονίδιο της Geminin ειδικά στα κύτταρα της νευρικής ακρολοφίας. Τα αποτελέσματα μας έδειξαν ότι η απουσία της Geminin από τα κύτταρα της νευρικής ακρολοφίας, οδηγεί στη δημιουργία εμβρύων με μορφολογικές αλλοιώσεις κατά τα πρώιμα στάδια της ανάπτυξης ενώ σε μεταγενέστερα αναπτυξιακά στάδια χαρακτηρίζονται από σοβαρές κρανιοπροσωπικές δυσμορφίες. Επιπλέον, η ιστοειδική αδρανοποίηση της Geminin οδήγησε σε απορρύθμιση των επιπέδων έκφρασης γονιδίων που επηρεάζουν τόσο την επαγωγή όσο και τη μετανάστευση των NCCs (mChd7, mSnail2, mTwist2,mFoxD3) κατά την 10.5η εμβρυική ημέρα. Μελέτη του κυτταρικού κύκλου των εντερικών κυττάρων νευρικής ακρολοφίας έδειξε ότι η αποσιώπηση της Geminin διαταράσσει το προφίλ του κυτταρικού τους κύκλου καθώς τα κύτταρα αυτά «μπλοκάρουν» κατά τη μετάβαση από την G2 στη Μ φάση (E9.5). Συμπερασματικά, τα αποτελέσματά μας δείχνουν ότι η Geminin συμμετέχει ενεργά στον ρύθμιση της έκφρασης γονιδίων που παίζουν σημαντικό ρόλο στην επαγωγή και τη μετανάστευση των NCCs κατά τα πρώιμα στάδια της εμβρυικής ανάπτυξης (Ε10.5). Τέλος, η Geminin διαδραματίζει σημαντικό ρόλο στον πολλαπλασιασμό των πρόδρομων κυττάρων του εντερικού νευρικού συστήματος (Ε9.5). / Neural Crest cells (NCCs) comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types during vertebrate development, including neurons and glial cells of Peripheral Nervous System (PNS). The induction of neural crest specification occurs at the end of gastrulation at the neural plate border initiate an epithelial-to-mesenchymal transition (EMT) that transforms these stationary cells into migratory cells. These processes are influenced by changes in the expression of transcription factors and epigenetic regulators. The Enteric Nervous System (ENS), is a subdivision of the PNS that controls the function of the gastrointestinal (GI) tract and is derived from the Vagal and Sacral NCCs. The formation of a fully functional ENS depends on the coordinated proliferation and differentiation decisions of NCCs. Vagal NCCs emigrate from the vagal region of the neural tube (somites 1-7), in a rostal to caudal direction and enter the foregut at embryonic day E9-9.5 (in mice), generating the ENS. The formation of a fully functional ENS depends on proliferation and differentiation decisions of NCCs. The aim of our work was to study the expression of genes that control self-renewal decisions and migration ability of the NCCs in mouse embryos in the absence of Geminin. Towards this direction we studied the in vivo role of Geminin in the early stages of NCCs development and in the developing ENS. Geminin is a Protein that has been shown to affect the balance between self-renewal and differentiation through multiple interactions with transcription factors and chromatin remodeling proteins. In order to further elucidate the in vivo role of Geminin in NCCs, we generated transgenic mice lacking Geminin expression specifically in NCCs. We have shown that the deletion of Geminin in NCCs, causes severe morphological and craniofacial malformation during embryonic development. The conditional inactivation of Geminin resulted in the deregulation of various genes that affect the induction and migration of NCCs (mChd7, mSnail2, mTwist2, mFoxD3) at E10.5. Examination of the cell cycle profile of enteric NCCs showed that the deletion of Geminin disrupted the proliferation of NCCs as cells are blocked at the transition from G2 to M phase (E9.5). In conclusion, our results highlight Geminin as an important molecule during the induction and migration of NCCs at the early stages of mouse embryonic development (10.5). Finally, Geminin plays an important role for the proliferation of ENS progenitor cells (E9.5).
50

The Role of Neural Crest Cells in Vertebrate Cardiac Outflow Development

Alonzo-Johnsen, Martha January 2014 (has links)
<p>Throughout vertebrate evolution, the cardiac outflow vasculature has changed from a branchial arch system to a systemic and pulmonary circulatory system. However, all vertebrate hearts and outflow tracts still develop from a single heart tube. In the chick and mouse, cardiac neural crest cells divide the single outflow tract into the aorta and pulmonary arteries. Additionally, cardiac neural crest cells provide the smooth muscle of the aortic arch arteries, help to remodel the aortic arch arteries into asymmetrical structures, and contribute cardiac ganglia. I review the major contributions of cardiac neural crest cells to the outflow vasculature of the chick and mouse and apply this information to study cardiac neural crest cell contributions to vertebrates that lack a divided circulatory system. I re-evaluate the role of cardiac neural crest cells in zebrafish vasculature and find that these cells do contribute to the gill arch arteries, the ventral aorta and cardiac ganglia, but they do not contribute to myocardium. I also study the outflow tract development of the turtle Trachemys scripta to understand the process of outflow septation in a vertebrate that has a divided outflow tract but an incomplete division of the ventricle. I compare the chick outflow tract to the turtle. The formation of the proximal versus distal cushions and the appearance of smooth muscle cells within the distal cushions of the turtle are very similar to the cushion position and cell types within the cushions of the chick. In the chick, the smooth muscle positive cells in the distal cushions are derived from cardiac neural crest cells. I hypothesize that cardiac neural crest cells are also responsible for the outflow tract septation of reptiles. These results demonstrate that the pattern of cardiac neural crest cell contribution to vertebrate vasculature remains predictable and consistent, enabling future studies to focus on changes in vascular patterning caused by cardiac neural crest cells among different vertebrate lineages.</p> / Dissertation

Page generated in 0.0229 seconds