41 |
Uma aplicação de mineração de dados ao programa bolsa escola da prefeitura da cidade do RecifeTabosa Florencio Filho, Roberto 31 January 2009 (has links)
Made available in DSpace on 2014-06-12T15:58:15Z (GMT). No. of bitstreams: 2
arquivo3328_1.pdf: 1621200 bytes, checksum: d29e5bc60f1421ccb8a8ca95694cb6d6 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2009 / Faculdade dos Guararapes / A tarefa de Mineração de Dados envolve um conjunto de técnicas de estatística e
inteligência artificial com objetivo de descobrir informações não encontradas por
ferramentas usualmente utilizadas para extração e armazenamento de dados em grandes
bases de dados. A aplicação da Mineração de Dados pode ser realizada em qualquer
área de conhecimento (Ciências Exatas, Humanas, Sociais, Biológica, Saúde, Agrária e
outras) proporcionando ganhos de informações e conhecimentos, ora desconhecidos, em
qualquer uma delas.
Este trabalho apresenta uma aplicação de mineração de dados ao programa Bolsa
Escola da Prefeitura da Cidade do Recife (PCR), particularmente na investigação da
situação das famílias beneficiadas, com o objetivo de oferecer à administração
municipal uma ferramenta de suporte à decisão capaz de aprimorar o processo de
concessão de benefícios. Foi analisada uma massa de dados sócio-econômicos
inicialmente de cerca de 60 mil famílias cadastradas no programa. Foi utilizada uma
rede neural artificial MultiLayer Perceptron (MLP) para classificar as famílias
beneficiadas com base nas suas características sócio-econômicas.
A avaliação de desempenho e resultados obtidos, além da resposta da
especialista no domínio de aplicação, demonstram a viabilidade dessa aplicação no
processo de concessão do benefício ao Programa Bolsa Escola da Prefeitura da Cidade
do Recife
|
42 |
Smart info: sistema inteligente para extração de informação de comentários em lojas de aplicativos móveisMOREIRA, Átila Valgueiro Malta 23 February 2016 (has links)
Submitted by Natalia de Souza Gonçalves (natalia.goncalves@ufpe.br) on 2016-09-28T12:13:59Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dissertação Átila Valgueiro Malta Moreira.pdf: 1329930 bytes, checksum: 6f5ad643b747ebf5a53091b1afaccd17 (MD5) / Made available in DSpace on 2016-09-28T12:13:59Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dissertação Átila Valgueiro Malta Moreira.pdf: 1329930 bytes, checksum: 6f5ad643b747ebf5a53091b1afaccd17 (MD5)
Previous issue date: 2016-02-23 / CAPES / O SMART INFO é um sistema de descoberta de conhecimento em avaliações feitas por
usuários de jogos móveis em lojas virtuais, tais como Google Play e iTunes, visando a
detecção automática de falhas que possam prejudicar a vida útil do jogo, assim como o
levantamento de sugestões feitas pelos usuários. Este sistema tem vital importância para o
novo paradigma de desenvolvimento, onde jogos deixam de ser tratados como produtos e
passam a ser tratados como serviços, passando a respeitar o ciclo ARM, que consiste em três
pontos: Aquisição, Retenção e Monetização. Para tanto foi utilizada Descoberta de
Conhecimento em Texto (DCT) por meio de uma adaptação do CRISP-DM, juntamente com
o processo de DCT. / SMART INFO is a knowledge discovery system that uses reviews made by mobile game
users on virtual stores, such as Google Play and iTunes, with the goals of automatically
detecting flaws, which might harm the game's lifespan, and obtaining suggestions made by
users. This system is of vital importance for the new paradigm of development, where games
stop being treated as products and start being treated as services, needing to respect the ARM
cycle, which consists of three main aspects: Acquisition, Retention and Monetization. To
achieve this, Knowledge Discovery in Text (KDT) was used through an adaptation of the
CRISP-DM, together with the DCT process
|
43 |
Využití technik Data Mining v různých odvětvích / Using Data Mining in Various IndustriesFabian, Jaroslav January 2014 (has links)
This master’s thesis concerns about the use of data mining techniques in banking, insurance and shopping centres industries. The thesis theoretically describes algorithms and methodology CRISP-DM dedicated to data mining processes. With usage of theoretical knowledge and methods, the thesis suggests possible solution for various industries within business intelligence processes.
|
44 |
Short-Term electricity consumption prediction: Elområde 4, SwedenKothapalli, Anil Kumar January 2021 (has links)
This Thesis work is part of course work for the Masters Program in Data Science at LTU. The focus of this work is mainly to review the literature published to identify state-of-art methodologies applied to predict short-term electricity consumption. This includes the exploration of features and models as well-as the discussion of the results attained. Identify opportunities to improve the forecast results for southern Elområde(bidding area)4, Sweden. The application of different modern methods to forecast electricity consumption has been studied and experimented with. This work adapted the CRISP-DM, a Data Science methodology.
|
45 |
A comparative study between algorithms for time series forecasting on customer prediction : An investigation into the performance of ARIMA, RNN, LSTM, TCN and HMMAlmqvist, Olof January 2019 (has links)
Time series prediction is one of the main areas of statistics and machine learning. In 2018 the two new algorithms higher order hidden Markov model and temporal convolutional network were proposed and emerged as challengers to the more traditional recurrent neural network and long-short term memory network as well as the autoregressive integrated moving average (ARIMA). In this study most major algorithms together with recent innovations for time series forecasting is trained and evaluated on two datasets from the theme park industry with the aim of predicting future number of visitors. To develop models, Python libraries Keras and Statsmodels were used. Results from this thesis show that the neural network models are slightly better than ARIMA and the hidden Markov model, and that the temporal convolutional network do not perform significantly better than the recurrent or long-short term memory networks although having the lowest prediction error on one of the datasets. Interestingly, the Markov model performed worse than all neural network models even when using no independent variables.
|
46 |
Représentation et gestion des connaissances dans un processus d'Extraction de Connaissances à partir de Données multi-points de vueZemmouri, El Moukhtar 14 December 2013 (has links) (PDF)
Les systèmes d'information des entreprises actuelles sont de plus en plus " submergés " par des données de tous types : structurées (bases de données, entrepôts de données), semi-structurées (documents XML, fichiers log) et non structurées (textes et multimédia). Ceci a créé de nouveaux défis pour les entreprises et pour la communauté scientifique, parmi lesquels comment comprendre et analyser de telles masses de données afin d'en extraire des connaissances. Par ailleurs, dans une organisation, un projet d'Extraction de Connaissances à partir de Données (ECD) est le plus souvent mené par plusieurs experts (experts de domaine, experts d'ECD, experts de données...), chacun ayant ses préférences, son domaine de compétence, ses objectifs et sa propre vision des données et des méthodes de l'ECD. C'est ce que nous qualifions de processus d'ECD multi-vues (ou processus multi-points de vue). Notre objectif dans cette thèse est de faciliter la tâche de l'analyste d'ECD et d'améliorer la coordination et la compréhensibilité entre les différents acteurs d'une analyse multi-vues, ainsi que la réutilisation du processus d'ECD en termes de points de vue. Aussi, nous proposons une définition qui rend explicite la notion de point de vue en ECD et qui tient compte des connaissances de domaine (domaine analysé et domaine de l'analyste) et du contexte d'analyse. A partir de cette définition, nous proposons le développement d'un ensemble de modèles sémantiques, structurés dans un Modèle Conceptuel, permettant la représentation et la gestion des connaissances mises en œuvre lors d'une analyse multi-vues. Notre approche repose sur une caractérisation multi-critères du point de vue en ECD. Une caractérisation qui vise d'abord à capturer les objectifs et le contexte d'analyse de l'expert, puis orienter l'exécution du processus d'ECD, et par la suite garder, sous forme d'annotations, la trace du raisonnement effectué pendant un travail multi-experts. Ces annotations sont partagées, comparées et réutilisées à l'aide d'un ensemble de relations sémantiques entre points de vue.
|
47 |
Reálná aplikace metod dobývání znalostí z databází na praktická data / The real application of methods knowledge discovery in databases on practical dataMansfeldová, Kateřina January 2014 (has links)
This thesis deals with a complete analysis of real data in free to play multiplayer games. The analysis is based on the methodology CRISP-DM using GUHA method and system LISp-Miner. The goal is defining player churn in pool from Geewa ltd.. Practical part show the whole process of knowledge discovery in databases from theoretical knowledge concerning player churn, definition of player churn, across data understanding, data extraction, modeling and finally getting results of tasks. In thesis are founded hypothesis depending on various factors of the game.
|
48 |
Návrh a implementace Data Mining modelu v technologii MS SQL Server / Design and implementation of Data Mining model with MS SQL Server technologyPeroutka, Lukáš January 2012 (has links)
This thesis focuses on design and implementation of a data mining solution with real-world data. The task is analysed, processed and its results evaluated. The mined data set contains study records of students from University of Economics, Prague (VŠE) over the course of past three years. First part of the thesis focuses on theory of data mining, definition of the term, history and development of this particular field. Current best practices and meth-odology are described, as well as methods for determining the quality of data and methods for data pre-processing ahead of the actual data mining task. The most common data mining techniques are introduced, including their basic concepts, advantages and disadvantages. The theoretical basis is then used to implement a concrete data mining solution with educational data. The source data set is described, analysed and some of the data are chosen as input for created models. The solution is based on MS SQL Server data mining platform and it's goal is to find, describe and analyse potential as-sociations and dependencies in data. Results of respective models are evaluated, including their potential added value. Also mentioned are possible extensions and suggestions for further development of the solution.
|
49 |
Možnosti prezentace výsledků DZD na webu / Options of presentation of KDD results on WebKoválik, Tomáš January 2015 (has links)
This diploma thesis covers KDD analysis of data and options of presentation of KDD results on Web. The paper is divided into three main sections, which follow the whole process of this thesis. In the first section are mentioned theoretical basics needed for understanding of discussed problem. In this section are described notions data matrix and domain knowledge, concept of CRISP-DM methodology, GUHA method, system LISp-Miner and implementation of GUHA method in LISp-Miner including description of core procedures 4ft-Miner and CF-Miner. The second section is dedicated to the first goal of this paper. It briefly summarizes analysis made during pre-analysis phase. Then is described process of analysis of domain knowledge in a given data set. The third part focuses on the second goal of this thesis, which is problem of presentation of KDD results on Web. This section covers brief theoretical basis for used technologies. Then is described development of export script for automatic generation of website from results found using LISp-Miner system including description of structure of the output and recommendations for work in LISp-Miner system.
|
50 |
Webový portál pro správu a klasifikaci informací z distribuovaných zdrojů / Web Application for Managing and Classifying Information from Distributed SourcesVrána, Pavel January 2011 (has links)
This master's thesis deals with data mining techniques and classification of the data into specified categories. The goal of this thesis is to implement a web portal for administration and classification of data from distributed sources. To achieve the goal, it is necessary to test different methods and find the most appropriate one for web articles classification. From the results obtained, there will be developed an automated application for downloading and classification of data from different sources, which would ultimately be able to substitute a user, who would process all the tasks manually.
|
Page generated in 0.2769 seconds