881 |
On Asynchronous Group Key Agreement : Tripartite Asynchronous Ratchet TreesGajland, Phillip January 2020 (has links)
The subject of secure messaging has gained notable attention lately in the cryptographic community. For communications between two parties, paradigms such as the double ratchet, used in the Signal protocol, provide provably strong security guarantees such as forward secrecy and post-compromise security. Variations of the Signal protocol have enjoyed widespread adoption and are embedded in several well known messaging services, including Signal, WhatsApp and Facebook Secret Conversations. However, providing equally strong guarantees that scale well in group settings remains somewhat less well studied and is often neglected in practice. This motivated the need for the IETF Messaging Layer Security (MLS) working group. The first continuous group key agreement (CGKA) protocol to be proposed was Asynchronous Ratcheting Trees (ART) [Cohn-Gordon et al., 2018] and formed the basis of TreeKEM [Barnes et al., 2019], the CGKA protocol currently suggested for MLS. In this thesis we propose a new asynchronous group key agreement protocol based on a one-round Tripartite Diffie-Hellman [Joux, 2000]. Furthermore, we show that our protocol can be generalised for an n-ary asynchronous ratchet tree, assuming the existence of a one-round (n + 1)-way Diffie-Hellman key exchange, based on a n-multilinear map [Boneh and Silverberg, 2003]. We analyse ART, TreeKEM, and our proposals from a complexity theoretic perspective and show that our proposals improve the cost of update operations. Finally we present some discussion and improvements to the IETF MLS standard. / Ämnet om säkra meddelanden har på senare tid skapat uppmärksamhet inom kryptografiska samfundet. För kommunikationer mellan två parter ger paradigmer såsom Double Ratchet, som används i Signal-protokollet, starka bevisbara säkerhetsgarantier som forward secrecy och post-compromise security. Variationer av Signal-protokollet används mycket i praktiken och är inbäddade i flera välkända meddelandetjänster såsom Signal, WhatsApp och Facebook Secret Conversations. Däremot är protokoll som erbjuder lika starka garantier och som skalar väl i gruppsituationer något mindre studerade och ofta eftersatta i praktiken. Detta motiverade behovet av arbetsgruppen IETF Messaging Layer Security (MLS). Det första kontinuerliga gruppnyckelprotokollet (CGKA) som föreslogs var Asynchronous Ratcheting Trees (ART) [Cohn-Gordon et al., 2018] och lade grunden för TreeKEM [Barnes et al., 2019], det CGKA-protokoll som för närvarande föreslagits för MLS. I detta examensarbete föreslår vi ett nytt asynkront gruppnyckelprotokoll baserat på en en-rundad Tripartite Diffie{Hellman [Joux, 2000]. Vidare visar vi att vårt protokoll kan generaliseras för n-ary träd med hjälp av ett en-rundat (n + 1)-väg Diffie-Hellman nyckelutbyte, baserat på en multilinjär mappning [Boneh and Silverberg, 2003]. Vi analyserar ART, TreeKEM och våra förslag ur ett teoretiskt perspektiv samt visar att våra förslag förbättrar kostnaden för uppdateringsoperationer. Slutligen presenterar vi några diskussioner och förbättringar av IETF MLS-standarden.
|
882 |
Homomorphic Encryption for Audio Conferencing / Homomorfisk kryptering för ljudkonferenssamtalNordin, Herman, Lindström, Ebba January 2022 (has links)
Homomorphic encryption (HE) enables computations on encrypted data making it possible to perform calculations on a server without sharing the secret key for decryption. HE is relatively new and has seen significant improvements in recent years in terms of speed of encryption, decryption, operations, and the number of operations possible to perform in a row without damaging the ciphertext. These improvements open up new possibilities, such as using HE in voice over IP (VoIP) and still being able to mix audio streams at the server without decrypting them, creating a scalable and secure application. This thesis evaluates the performance of three HE schemes, BGV, BFV, and CKKS, implemented by the open-source library Palisade and compares their performance to a non-HE scheme AES in terms of encryption time, decryption time and end-to-end latency. Furthermore, the performance of mixing with HE-encrypted audio files is evaluated. The work is a proof-of-concept that allows the user to send audio files of different sample rates and batch sizes to compare the performance. It also investigates the Quality of Experience by measuring the audio quality after the mixing, using PESQ and POLQA. The results show that BGV performs almost as good as AES for higher batch sizes, while BFV performs almost as good in most cases and trails behind in others. CKKS, on the other hand, is the slowest scheme but is still fast enough in some cases to be considered a possible encryption scheme. Furthermore, the tests show that the HE schemes do not decrease the listening quality much according to PESQ and POLQA, as all tests concluded a result that is considered good or excellent. The number of files being mixed had a negative impact on narrowband and wideband audio streams, while it did not affect superwideband and fullband.
|
883 |
EFFICIENT IMPLEMENTATION OF ELLIPTIC CURVE CRYPTOGRAPHY IN RECONFIGURABLE HARDWARELien, E-Jen 19 June 2012 (has links)
No description available.
|
884 |
Inverted Edwards Coordinates (Maire Model of an Elliptic Curve)Maire, Steven M. 30 June 2014 (has links)
No description available.
|
885 |
Rendering Secured Connectivity in a Wireless IoT Mesh Network with WPAN's and VANET'sPrakash, Abhinav 15 June 2017 (has links)
No description available.
|
886 |
Device Specific Key Generation Technique for Anti-Counterfeiting Methods Using FPGA Based Physically Unclonable Functions and Artificial IntelligencePappala, Swetha 27 September 2012 (has links)
No description available.
|
887 |
DESIGN AND PERFORMANCE ANALYSIS OF A SECURE PROCES-SOR SCAN-SP WITH CRYPTO-BIOMETRIC CAPABILITIESKannavara, Raghudeep 29 October 2009 (has links)
No description available.
|
888 |
Semi-Regular Sequences over F2Molina Aristizabal, Sergio D. January 2015 (has links)
No description available.
|
889 |
Efficient Building Blocks for Secure Multiparty Computation and Their ApplicationsDonghang Lu (13157568) 27 July 2022 (has links)
<p>Secure multi-party computation (MPC) enables mutually distrusting parties to compute securely over their private data. It is a natural approach for building distributed applications with strong privacy guarantees, and it has been used in more and more real-world privacy-preserving solutions such as privacy-preserving machine learning, secure financial analysis, and secure auctions.</p>
<p><br></p>
<p>The typical method of MPC is to represent the function with arithmetic circuits or binary circuits, then MPC can be applied to compute each gate privately. The practicality of secure multi-party computation (MPC) has been extensively analyzed and improved over the past decade, however, we are hitting the limits of efficiency with the traditional approaches as the circuits become more complicated. Therefore, we follow the design principle of identifying and constructing fast and provably-secure MPC protocols to evaluate useful high-level algebraic abstractions; thus, improving the efficiency of all applications relying on them. </p>
<p><br></p>
<p>To begin with, we construct an MPC protocol to efficiently evaluate the powers of a secret value. Then we use it as a building block to form a secure mixing protocol, which can be directly used for anonymous broadcast communication. We propose two different protocols to achieve secure mixing offering different tradeoffs between local computation and communication. Meanwhile, we study the necessity of robustness and fairness in many use cases, and provide these properties to general MPC protocols. As a follow-up work in this direction, we design more efficient MPC protocols for anonymous communication through the use of permutation matrices. We provide three variants targeting different MPC frameworks and input volumes. Besides, as the core of our protocols is a secure random permutation, our protocol is of independent interest to more applications such as secure sorting and secure two-way communication.</p>
<p><br></p>
<p>Meanwhile, we propose the solution and analysis for another useful arithmetic operation: secure multi-variable high-degree polynomial evaluation over both scalar and matrices. Secure polynomial evaluation is a basic operation in many applications including (but not limited to) privacy-preserving machine learning, secure Markov process evaluation, and non-linear function approximation. In this work, we illustrate how our protocol can be used to efficiently evaluate decision tree models, with both the client input and the tree models being private. We implement the prototypes of this idea and the benchmark shows that the polynomial evaluation becomes significantly faster and this makes the secure comparison the only bottleneck. Therefore, as a follow-up work, we design novel protocols to evaluate secure comparison efficiently with the help of pre-computed function tables. We implement and test this idea using Falcon, a state-of-the-art privacy-preserving machine learning framework and the benchmark results illustrate that we get significant performance improvement by simply replacing their secure comparison protocol with ours.</p>
<p><br></p>
|
890 |
A deep learning based side-channel analysis of an FPGA implementation of Saber / En djupinlärningsbaserad sidokanalanalys av en FPGA-implementering av SaberJi, Yanning January 2022 (has links)
In 2016, NIST started a post quantum cryptography (PQC) standardization project in response to the rapid development of quantum algorithms which break many public-key cryptographic schemes. As the project nears its end, it is necessary to assess the resistance of its finalists to side-channel attacks. Although several side-channel attacks on software implementations PQCfinalists have been presented in recent papers, hardware implementations have been investigated much less. In this thesis, we present the first side-channel attack on an FPGA implementation of one of the NIST PQC finalists, Saber. Our experiments are performed on a publicly availible implementation of Saber compiled with Xilinx Vivado for an Artix-7 XC7A100T FPGA. We trained several deep learning models in an attempt to recover the Hamming weight and value of messages using their corresponding power traces. We also proposed a method to determine the Hamming weight of messages through binary search based on these models. We found out that, due to the difference in software and hardware implementations, the previously presented message recovery method that breaks a masked software implementation of Saber cannot be directly applied to the hardware implementation. The main reason for this is that, in the hardware implementation used in our experiments, all 256 bits of a message are processed in parallel, while in the software implementation used in the previous work, the bits are processed one-by-one. Future works includes finding new methods for analyzing hardware implementations. / Under 2016 startade NIST ett standardiseringsprojekt efter kvantkryptering (PQC) som svar på den snabba utvecklingen av kvantalgoritmer som bryter många kryptografiska system med offentliga nyckel. När projektet närmar sig sitt slut är det nödvändigt att bedöma finalisternas motstånd mot sidokanalsattacker. Även om flera sidokanalsattacker på programvaruimplementationer PQC-finalister har presenterats i de senaste tidningarna, har hårdvaruimplementationer undersökts mycket mindre. I denna avhandling presenterar vi den första sidokanalsattacken på en FPGA-implementering av en av NIST PQC-finalisterna, Sabre. Våra experiment utförs på en allmänt tillgänglig implementering av Sabre kompilerad med Xilinx Vivado för en Artix-7 XC7A100T FPGA. Vi tränade f lera modeller för djupinlärning i ett försök att återställa Hamming-vikten och värdet av meddelanden med hjälp av deras motsvarande kraftspår. Vi föreslog också en metod för att bestämma Hamming-vikten för meddelanden genom binär sökning baserat på dessa modeller. Vi fick reda på att, på grund av skillnaden i mjukvaru- och hårdvaruimplementationer, kan den tidigare presenterade meddelandeåterställningsmetoden som bryter en maskerad mjukvaruimplementering av Sabre inte direkt appliceras på hårdvaruimplementeringen. Den främsta anledningen till detta är att i hårdvaruimplementeringen som används i våra experiment bearbetas alla 256 bitar i ett meddelande parallellt, medan i mjukvaruimplementeringen som användes i det tidigare arbetet bearbetas bitarna en i taget. Framtida arbete inkluderar att hitta nya metoder för att analysera hårdvaruimplementationer.
|
Page generated in 0.0234 seconds