Spelling suggestions: "subject:"CT- angiographic""
1 |
Evaluation intrakranieller In-Stent-Restenosen nach Stenting mit Hilfe digitaler Subtraktionsangiographie, Flachdetektor-CT und Multidetekor-CT / Evaluation of intracranial in-stent restenoses after stenting by digital subtraction angiography, flat-detector CT and multidetector CTAmelung, Nadine 10 October 2017 (has links)
No description available.
|
2 |
Schlaganfall-Bildgebung mittels Mehrschicht-Spiral-CTBohner, Georg 21 February 2005 (has links)
Es wurde der Einsatz der Mehrschicht-Spiral-CT (MS-CT) zur zerebralen Perfusionsbildgebung und zur zerviko-zerebralen Angiographie bei Schlaganfallpatienten evaluiert. Bei 52 Patienten mit klinischen Zeichen einer akuten Ischämie wurde im Mittel 3,4 Stunden nach Symptombeginn an einem MS-CT Gerät eine CT-Perfusion (CTP) durchgeführt. Parameterbilder der zerebralen Blutperfusion (CBP), des zerebralen Blutvolumens (CBV) und der mittleren Transitzeit (MTT) wurden generiert, Perfusionsstörungen ermittelt und mit bildgebenden sowie klinischen Verlaufskontrollen korreliert. Eine CT-Angiographie (CTA) wurde initial bei 12 Patienten angewandt, um die Eignung des Untersuchungsprotokolls zu prüfen. Darüber hinaus wurden bei 45 Patienten mit Zeichen einer akuten zerebrovaskulären Insuffizienz die Ergebnisse der CTA mit denen anderer bildgebender Modalitäten (Magnetresonanz-Angiographie, digitale Subtraktionsangiographie, Dopplerultraschall) verglichen. Perfusionsbilder konnten von 44 Patienten generiert werden, hiervon entwickelten 22 Patienten einen im Verlauf gesicherten Infarkt. An Hand der MTT-Bilder konnten ischämische Veränderungen mit einer Sensitivität von 95 % erfasst werden, die Spezifität war mit 100 % für die CBV-Bilder am höchsten. Patienten mit Infarkt zeigten seitenvergleichend eine signifikante Reduktion der CBP in ischämischen Arealen. Die Ausdehnung der CBV Reduktion ergab die beste Korrelation mit dem endgültigen partiellen Infarktvolumen. Mit der CTA konnte anfänglich bei 12 / 12 Patienten, später bei 43 / 45 (96 %) eine umfassende Darstellung des zerviko-zerebralen Gefäßsystems erreicht werden, wobei in 22 Infarktpatienten die zu Grunde liegende Gefäßpathologie erkannt werden konnte. Das evaluierte Protokoll zur Perfusionsbildgebung mittels Mehrschicht-Spiral-CT ist zur frühzeitigen Erkennung und Quantifizierung einer akuten zerebralen Ischämie geeignet und bietet zusammen mit der CTA, welche das gesamte zerviko-zerebrale Gefäßsystem verlässlich visualisieren kann, die Möglichkeit einer umfassenden Bildgebung mittels MS-CT bei Schlaganfallpatienten. / The application of multi-slice spiral computed tomography (MS-CT) in the diagnostic assessment of stroke patients using cerebral perfusion imaging and cervicocerebral angiography was evaluated. Fifty-two patients with clinically suspected acute ischemia underwent CT perfusion (CTP), performed 3.4 hours, on average, after the onset of symptoms, by using MS-CT. Perfusion images of the cerebral blood perfusion (CBP), cerebral blood volume (CBV) and mean transit time (MTT) were calculated. The amount and extension of perfusion disturbances were measured and correlated with the outcome. CT angiography (CTA) was initially performed on twelve patients to verify the suitability of the examination protocol. In addition, forty-five patients with signs of acute cerebrovascular insufficiency underwent CTA. CTA findings were compared with those of other imaging modalities (magnetic resonance imaging, digital subtraction angiography, doppler ultrasonography). Of 44 patients in whom perfusion maps could be generated, 22 developed infarction confirmed at follow-up. On MTT-maps ischemic changes could be detected with the highest sensitivity (95%). Specificity was highest (100%) for CBV-maps. Patients with infarction showed significant reduction of CBP in ischemic tissue compared to the contra lateral hemisphere. Extension of CBV reduction showed the best correlation with final infarct volume. Initially in twelve out of twelve patients, later in 43 out of 45 (96%), the cervicocranial vascular system could be comprehensively visualized using CTA. In 22 stroke patients the underlying vascular pathology could be detected. CT perfusion using multi-slice CT is a suitable tool for the early identification and quantification of acute cerebral ischemia. Multi-slice CT angiography permits reliable visualization of the cervicocranial vascular system. Together these tools offer comprehensive assessment of stroke patients by means of multi-slice CT.
|
3 |
Ergebnisse der CT-Angiographie bei der Diagnostik von NierenarterienstenosenLudewig, Stefan 06 November 2000 (has links)
EINLEITUNG: Die CT- Angiographie (CTA) ist eine neue Methode zum anatomischen Nachweis pathologischer Veränderungen am Gefäßsystem. Die Wertigkeit der an unserem Institut durchgeführten CT- Angiographien bezüglich der Diagnostik von Nierenarterienstenosen sollte untersucht werden. Außerdem sollten die einzelne Rekonstruktionsarten auf ihren Nutzen geprüft werden. MATERIAL UND METHODEN: Die Nierenarterien von 23 Patienten wurden sowohl angiograpisch als auch mit CTA untersucht. Aus dem Datensatz jeder Untersuchung wurden Axiale Schnittbilder (AS), axiale und coronale multiplanare Reformationen (cMPRa, cMPRc), 3D- Oberflächenrekonstruktion (SSD) und Maximum- Intensitäts- Projektion (MIP) angefertigt. Ohne Kenntnis des Angiographie- Befundes wurden in der ersten Befundungssitzung alle CTA- Rekonstruktionen einzeln beurteilt. Dabei kam eine fünfteilige Stenosengraduierung zum Einsatz. In der zweiten Befundungssitzung wurde die Diagnose anhand aller CTA- Rekonstruktionen eines Falles gestellt. Sensitivität, Spezifität und Kappa ergaben sich aus dem Vergleich mit den Angiographie- Befunden. ERGEBNISSE: Die CTA konnte relevante Nierenarterienstenosen (Lumeneinengung >50%) mit einer Sensitivität von 92,9 % und einer Spezifität von 86,7 % nachweisen. Der CTA- Stenosegrad stimmte bei Anwendung einer Unterteilung in fünf Kategorien in 65,9 % der Fälle mit dem der Angiographie überein (kappa = 0,468). Bei der Beurteilung der einzelnen Rekonstruktion lieferten die AS (Sensitivität 78,6 %, Spezifität 90,0 %, kappa 0,692) und die MIP (Sensitivität 71,4 %, Spezifität 96,7 %, kappa 0,726) die besten Resultate. Die cMPRa und cMPRc besaßen durch die ausschließliche Filmbefundung eine deutlich niedrigere diagnostische Qualität. Tendenziell wurde der Stenosegad mittels CTA unterschätzt. SCHLUSSFOLGERUNG: Die CTA besitzt eine hohe Wertigkeit bei der Diagnostik von Nierenarterienstenosen. Unsere Ergebnisse decken sich mit denen anderer Studien. Der Einsatz der CTA bei Verdacht auf eine Nierenarterienstenose kann die Zahl unnötiger Angiographien deutlich reduzieren. Zur Befunderhebung sollten die AS und die MIP regelmäßig genutzt werden. / PURPOSE: To evaluate the accuracy of Computed Tomographic Angiography (CTA) in the detection of renal artery stenosis in our department and to investigate the role of the different reformattings in making the right diagnosis. MATERIALS AND METHODS: CTA and conventional Arteriography were performed on 23 Patients and axial slices (AS), curved axial multiplanar reformatting (cMPRa), curved coronal multiplanar reformatting (cMPRc), shaded surface display (SSD) and maximum intensity projections (MIP) were performed. During the first reading- session all blinded images were reviewed seperately, while all reformattings of one patient were analysed in the second reading session by one experienced radiologist, using a five- point- scale to determine the grade of the stenosis. RESULTS: Stenoses greater than 50% could be depicted by CTA with a sensitivity of 92,9 % and a specifity of 86,7 %. Applying a 5 five- point- scale, 65,9% of the diagnoses met the ones made by angiography (kappa= 0,468). MIP and AS were the most usefull reformattings with sensitivity, specifity and kappa reaching 71,4 %, 96,7 %, 0,726 and 78,6 %, 90 %, 0,692respectively. A tendency for underestimating the degree of the stenoses was notable. CONCLUSIONS: CTA has a high accuracy in diagnosing renal artery stenoses. Our results do not differ much from other studies on this technique. Applying CTA in suspected renal artery stenosis can reduce the amount of unnessecary arteriographies. For best results, MIP and AS should always be reviewed.
|
4 |
Evaluation eines Software-Pakets zur semiautomatischen Segmentation von Plaqueanteilen bei symptomatischer Arteria carotis-Stenose / Semi-automated segmentation of plaque components in symptomatic carotid artery stenosis evaluation of a software packageKruse, Jan 02 November 2010 (has links)
No description available.
|
5 |
Diagnostik der akuten Subarachnoidalblutung mit computertomografischer digitaler Subtraktionsangiographie (CT-DSA)Aulbach, Peter 10 October 2018 (has links)
Einleitung: Die schnelle Detektion und genaue Beurteilbarkeit (Charakterisierung) von rupturierten, zerebralen Aneurysmen ist entscheidend für die Wahl der adäquaten endovaskulären oder neurochirurgischen Intervention (Therapie), um Patienten mit akuter Subarachnoidalblutung (SAB) eine möglichst gute Prognose zu verschaffen. Es war das Ziel der Studie zu untersuchen, ob und wie weit die Knochensubtraktions-CT-Angiografie (CT-DSA), bereits mit einem relativ alten 16-Kanal-MSCT in der Lage ist die invasive Digitale Subtraktionsangiografie (DSA; Goldstandard) hinsichtlich der Detektion, morphologischer Charakterisierung und letztendlich Therapieentscheidung zu ersetzen und damit den klinischen Pfad dieser Patienten zu beeinflussen.
Methodik: Zu diesem Zweck untersuchten wir 116 Patienten mit akuter SAB vor der intrakraniellen Aneurysmatherapie. Die SAB Patienten wurden jeweils erst mit 16-Kanal-MSCT Angiografie und verbesserter, automatisierter Knochensubtraktion untersucht. Der verbesserte CT-DSA Algorithmus beinhaltet eine block- oder scheibenweise Patienten Bewegungskorrektur und eine lokal adaptierbare 3D dilatierte Knochenmaske. Die lokale Adaption der Maske wurde für eine präzisere Knochensubtraktion an der Grenze von Gefäß zu Knochen entwickelt. Danach wurde die konventionelle DSA angewandt. Zwei erfahrene Neuroradiologen beurteilten die CT-DSA und die DSA Daten unabhängig voneinander. Es wurde die Genauigkeit der verbesserten CT-DSA Methode für die Detektion, morphologische Charakterisierung sowie die Vermessung der Aneurysmadimensionen bestimmt. Im Fall von Uneinigkeit wurde ein Ergebnis im Konsens ermittelt. Zudem wurde die Röntgendosis beider Methoden für die Diagnostik von Aneurysmen verglichen.
Ergebnisse: Mit der DSA wurden in 71 Patienten 74 Aneurysmen entdeckt. Achtundsechzig Patienten hatten 1 und 3 Patienten zwei Aneurysmen. Mit den CT-DSA Daten konnten 73 der 74 in der DSA delektierten Aneurysmen gefunden werden. Hier hatten 66 Patienten 1 und 4 Patienten 2 Aneurysmen. Mit der CT-DSA wurde noch ein weiteres kleines Aneurysma detektiert. Die Auswertung per Aneurysma, für die Sensitivität, Spezifität, den negativen und positiven Vorhersagewert, zeigte für die CT-DSA jeweils 99% und 100%, sowie 100% und 98%. Für kleine Aneurysmen, ≤3,0 mm betrug die Sensitivität 94%, mit einem 95%-Konfidenzintervall zwischen 73%–99%. Längenmessungen mit der CT-DSA waren ebenso genau wie bei der DSA und stimmten bei kleineren Messungen sogar noch besser überein als bei größeren. Die CT-DSA Fundus/Hals-Verhältnisse lagen mit 0,03 (ca. 2%) unter denen der DSA. Das Dosis-Längen-Produkt für die CT-DSA lag bei 565 mGy × cm ±201 [SD] und für die DSA bei 1.609 mGy × cm ±1.300 [SD].
Diskussion: Die CT-Angiografie mit 16-Kanal-MSCT und modernen Knochen-subraktionsalgorithmen ist für die Detektion von zerebralen Aneurysmen bei Patienten mit akuter SAB ebenso genau wie die DSA. Sie erzielt ähnliche Ergebnisse für die Aneurysmamorphologie und -abmessungen. Diese gilt selbst für schädelbasisnahe und kleine Aneurysmen oder bei Patientenbewegung. In Fällen, in denen die erste CT-DSA die Ursache der SAB nicht zeigt, ist es nicht mehr zwingend notwendig eine DSA durchzuführen. Eine zweite CT-DSA ist ausreichend. Weiterhin benötigt die CT-DSA bis zu 65% weniger Röntgendosis für die Diagnose als die DSA. Zudem ist die Diagnose mit der CT-DSA in kürzerer Zeit und für den Patienten risikoärmer, weil nichtinvasiv.
Schlussfolgerung: Die CT-DSA mit einem verbesserten Algorithmus, der Bewegungsartefakte und artifizielle Stenosen an der Grenze von Gefäß zu Knochen minimierte, zeigt in Verbindung mit einem 16-Kanal-MSCT eine diagnostische Äquivalenz zur DSA. Diese Tatsache und die zusätzlich deutlich geringere Röntgenstrahlenbelastung sprechen dafür, die DSA Diagnostik bei Patienten mit spontaner SAB durch die schnellere und schonendere CT-DSA zu ersetzten. Damit kann die CT-DSA Therapieentscheidungen schneller, schonender, kostengünstiger und zielgerichteter herbeiführen. Bei der Einführung dieses Verfahrens ist weniger auf die eingesetzte CT-Technologie (16-, 64-, 320-Zeilen oder Zwei-Röhren MSCT) als auf den Einsatz der aktuellsten Knochensubtraktions-Technologie sowie ein angemessenes Training (Erfahrung) des Befunders zu achten.:1 Einleitung 1
1.1 Ätiologie der Subarachnoidalblutung (SAB) 1
1.2 SAB Pathogenese 2
1.3 SAB Epidemiologie 4
1.4 SAB Risikofaktoren 4
1.5 SAB Grading 5
1.6 SAB Letalität 5
1.7 SAB Diagnostik 6
1.7.1 Invasive Digitale Subtraktionsangiografie (DSA) 6
1.7.2 Nichtinvasive Mehrschicht-Computertomografie (CT) 10
1.8 Aneurysma Therapie 15
1.9 Zielsetzung 17
2 Patienten und Methoden 20
2.1 Patienten 20
2.2 Ein – und Ausschlusskriterien 20
2.3 Nativ-CT und CT-DSA 22
2.3.1 Nativ-CT Technik 22
2.3.2 CT-DSA Technik 22
2.3.3 Prototypische, automatisierte CT-DSA Auswertung 24
2.4 Digitale Subtraktionsangiografie (DSA) 27
2.5 Vermessung der Aneurysmen 27
2.6 Vergleich der Messmethoden 29
2.7 Befundungsqualität der Untersucher 29
2.8 Beurteilung der Ergebnisse 29
2.9 Beurteilung der Strahlenbelastung 30
2.10 Statistische Methoden 31
2.10.1 Fallzahlplanung 32
2.10.2 Diagnostische Genauigkeit 33
2.10.3 Methodenvergleich 34
2.10.4 Inter- und Intraobserver-Variabilität 35
3 Ergebnisse 36
3.1 Patienten 36
3.2 Nativ-CT 36
3.3 CT-DSA 36
3.4 DSA - Referenz für die Aneurysmadetektion 42
3.5 Vergleich CT-DSA mit DSA 45
3.5.1 CT-DSA Genauigkeit 45
3.5.1.1 Basierend auf prospektiver DSA 45
3.5.1.2 Basierend auf retrospektiver DSA 47
3.5.2 Aneurysma-Messergebnisse 49
3.5.3 Untersucher und Aneurysma-Konfiguration 59
3.5.4 Röntgendosis 59
3.5.5 Bildinterpretationszeiten 60
4 Diskussion 61
4.1 CT-DSA Genauigkeit für den Aneurysmanachweis 61
4.1.1 Besonderheiten der CT-DSA Anwendung 63
4.1.2 Besonderheit der CT-DSA Prototypen Software 63
4.2. CT-DSA Informationen als alleinige Planungsbasis für neurochirurgische oder endovaskuläre Eingriffe 64
4.3 Robustheit und Reproduzierbarkeit 67 / Background and purpose: Detection and evaluation of ruptured aneurysms is critical for choosing an appropriate endovascular or neurosurgical intervention (therapy) in patients with acute subarachnoid hemorrhage (SAH). Our aim was to assess whether 16-detector row multislice CT (MSCT) bone-subtraction CTA is capable of guiding treatment for cerebral aneurysms in patients with acute SAH and could replace DSA – the current reference standard.
Materials and methods: In a prospective study, 116 consecutive patients with SAH were examined with 16–detector row MSCT with an advanced bone-subtraction CTA prototype and DSA before intracranial aneurysm treatment. The advancements of the prototype CT-DSA algorithm were a slab-based patient motion correction and a locally optimized 3D dilated bonemask. The local adaption of the bone mask was designed for more precise bone subtraction at bone-to-vessel interfaces. Two independent neuroradiologists reviewed the bone-subtraction CTA blinded to DSA. The accuracy of the advanced bone-subtraction CTA for aneurysm detection, morphological characterization and the measurement of aneurysm dimensions were determined. In case of disagreement the result was attained in consensus. Additionally the radiation doses of the 2 diagnostic imaging modalities compared.
Results: Seventy-one patients (61%) had 74 aneurysms on DSA. Sixty-eight patients had 1 and 3 patients 2 aneurysms. Bone-subtraction CTA detected 73 of these aneurysms. With CT-DSA 66 patients had 1 and 4 patients 2 aneurysms. CT-DSA discovered an additional small aneurysm. On a per-aneurysm basis, sensitivity, specificity, and positive and negative predictive values for bone-subtraction CTA were 99%, 100%, and 100% and 98%, respectively. For aneurysms of ≤3 mm, sensitivity was 94% (95% CI, 73%–99%). Length measurements with bone-subtraction CTA were as exact as the DSA measurements and agreed even better for small measurements than for larger ones. CT-DSA dome-to-neck ratios were on average 0.03 smaller (2%) than with DSA. Dose-length product was 565 mGy × cm ±201 [SD] for bone-subtraction CTA and 1.609 mGy × cm ±1.300 [SD ]for DSA.
Discussion: 16–detector row MSCT with advanced bone-subtraction CTA is as accurate as DSA in detecting cerebral aneurysms after SAH, provides similar information about aneurysm configuration and measures. This is even true for small aneurysms adjacent to bony structures (e.g. the base of the scull) or under patient motion. In SAB patients in whom the initial CT-DSA doesn’t show the root cause of the SAH, a DSA is not imperative any longer. In this case a second CT-DSA is sufficient. Additionally the CT-DSA reduces the average effective radiation dose for vascular diagnostics by 65%. Furthermore the CT-DSA-based diagnosis can be performed in shorter time and at less patient risk due to its non-invasive nature.
Conclusion: The advanced CT-DSA algorithm - that minimized patient motion and artificial stenosis at the bone-to-vessel interfaces - in combination with commonly available 16-detector row MSCT demonstrated diagnostic equivalence in comparison to the DSA reference. Diagnostic equivalence in association with dose reduction suggests replacing DSA with the faster and more patient friendly bone-subtraction CTA in the diagnostic work-up of spontaneous SAH. Thus CT-DSA can accelerate targeted therapy decisions more cost effective and at less risk for the patient. Using the latest and appropriate subtraction technology and ensuring adequate training (reader experience) is more relevant than the used CT-technology (16-, 64-, 320-detector row or dual source MSCT) when introducing CT-DSA protocols.:1 Einleitung 1
1.1 Ätiologie der Subarachnoidalblutung (SAB) 1
1.2 SAB Pathogenese 2
1.3 SAB Epidemiologie 4
1.4 SAB Risikofaktoren 4
1.5 SAB Grading 5
1.6 SAB Letalität 5
1.7 SAB Diagnostik 6
1.7.1 Invasive Digitale Subtraktionsangiografie (DSA) 6
1.7.2 Nichtinvasive Mehrschicht-Computertomografie (CT) 10
1.8 Aneurysma Therapie 15
1.9 Zielsetzung 17
2 Patienten und Methoden 20
2.1 Patienten 20
2.2 Ein – und Ausschlusskriterien 20
2.3 Nativ-CT und CT-DSA 22
2.3.1 Nativ-CT Technik 22
2.3.2 CT-DSA Technik 22
2.3.3 Prototypische, automatisierte CT-DSA Auswertung 24
2.4 Digitale Subtraktionsangiografie (DSA) 27
2.5 Vermessung der Aneurysmen 27
2.6 Vergleich der Messmethoden 29
2.7 Befundungsqualität der Untersucher 29
2.8 Beurteilung der Ergebnisse 29
2.9 Beurteilung der Strahlenbelastung 30
2.10 Statistische Methoden 31
2.10.1 Fallzahlplanung 32
2.10.2 Diagnostische Genauigkeit 33
2.10.3 Methodenvergleich 34
2.10.4 Inter- und Intraobserver-Variabilität 35
3 Ergebnisse 36
3.1 Patienten 36
3.2 Nativ-CT 36
3.3 CT-DSA 36
3.4 DSA - Referenz für die Aneurysmadetektion 42
3.5 Vergleich CT-DSA mit DSA 45
3.5.1 CT-DSA Genauigkeit 45
3.5.1.1 Basierend auf prospektiver DSA 45
3.5.1.2 Basierend auf retrospektiver DSA 47
3.5.2 Aneurysma-Messergebnisse 49
3.5.3 Untersucher und Aneurysma-Konfiguration 59
3.5.4 Röntgendosis 59
3.5.5 Bildinterpretationszeiten 60
4 Diskussion 61
4.1 CT-DSA Genauigkeit für den Aneurysmanachweis 61
4.1.1 Besonderheiten der CT-DSA Anwendung 63
4.1.2 Besonderheit der CT-DSA Prototypen Software 63
4.2. CT-DSA Informationen als alleinige Planungsbasis für neurochirurgische oder endovaskuläre Eingriffe 64
4.3 Robustheit und Reproduzierbarkeit 67
|
6 |
CT-Koronarangiographie: Einfluss der Positionierung der Region of Interest beim Bolus-Tracking auf die BildqualitätNebelung, Heiner 19 January 2019 (has links)
Hintergrund und Fragestellung
Um den Zeitpunkt des Beginns der Datenakquisition bei der CT-Koronarangiographie festzulegen, bietet die Methode des Bolus-Trackings eine weit verbreitete Möglichkeit. Hierfür muss eine sogenannte Region of Interest (ROI) festgelegt werden, in der die Kontrastmittelanflutung gemessen wird. Bisher wurden die Auswirkungen unterschiedlicher Positionierungen dieser ROI auf die Bildqualität der Koronararterien (Hauptstamm der linken Koro-nararterie: LM; rechte Koronararterie: RCA) noch nicht systematisch untersucht. Zwei häufig verwendete Positionen sind der linke Herzvorhof (LV) und die Aorta ascendens (AA). Diese Positionierungen sollten in dieser Studie verglichen werden.
Auch bei der Triple-Rule-Out-CT-Angiographie (TRO-CTA), in der zusätzlich zu den Koronararterien auch die Pulmonalarterien sowie die thorakale Aorta beurteilt werden sollen, kommt das Bolus-Tracking zur Anwendung. Die ROI wird hierbei meist im linken Herzvorhof positioniert. Da bisher nicht gezeigt wurde, ob die Pulmonalarterien (rechte Pulmonalarterie: RPA; linke Pulmonalarterie: LPA) dadurch tatsächlich in besserer Qualität dargestellt werden, sollte auch diese Frage in der Studie beantwortet werden.
Methode
Alle Patienten der vorliegenden monozentrischen, retrospektiven Studie erhielten eine CT-Koronarangiographie im Step-and-Shoot-Modus zum Ausschluss einer koronaren Herzkrankheit bei intermediärem Risiko. Mittels Propensity-Score-Matching wurden insgesamt 192 Patienten für die Studie ausgewählt: je 96 mit Positionierung der ROI im linken Vorhof bzw. in der Aorta ascendens (122 männliche und 70 weibliche Patienten, Alter 21 bis 87 Jahre, Durchschnittsalter 61 Jahre). Um möglichst ähnliche Patientencharakteristika in beiden Gruppen zu erreichen, wurden beim Propensity-Score-Matching folgende Faktoren berücksichtigt: Geschlecht, Körpergröße, Körpergewicht und Herzfrequenz.
Für die Beurteilung der Bildqualität wurden sowohl ein quantitativer als auch ein qualitativer Score verwendet. Bei der quantitativen Analyse wurden die Signalintensitäten sowie deren Standardabweichungen in den zu beurteilenden Strukturen gemessen und daraus die Signal-Rausch-Verhältnisse (SNR) errechnet. Die qualitative Auswertung wurde von zwei Fachärzten für Radiologie mit 10 bzw. 6 Jahren Erfahrung in der CT-Koronarangiographie unabhängig voneinander mit Hilfe einer 5-Punkte-Likert-Skala durchgeführt. So wurde zum einen die Qualität der Darstellung der Koronararterien verglichen, zum anderen die der Pulmonalarterien.
Für die statistische Auswertung wurde der Wilcoxon-Test verwendet, um die quantitativen sowie qualitativen Scores beider Patientengruppen miteinander zu vergleichen. Außerdem wurde bezüglich der qualitativen Analyse die Interrater-Reliabilität mittels gewichtetem Cohens Kappa (κ) bestimmt.
Zusätzlich wurde die Strahlenbelastung beider Gruppen durch die Betrachtung der Dosis-Längen-Produkte sowie die Berechnung der effektiven Dosen verglichen.
Ergebnisse
Bezüglich der Koronararterien fanden sich sowohl beim Vergleich der quantitativen (SNR AA 14.92 vs. 15.46; p = 0.619 | SNR LM 19.80 vs. 20.30; p = 0.661 | SNR RCA 24.34 vs. 24.30; p = 0.767) als auch der qualitativen Scores (4.25 vs. 4.29; p = 0.672) keine signifikanten Unterschiede in beiden Gruppen.
Für die Darstellung der Pulmonalarterien hat die Position der ROI allerdings eine entscheidende Bedeutung. Bei einer Positionierung im linken Vorhof ergeben sich signifikant höhere quantitative (SNR RPA 8.70 vs. 5.89; p < 0.001 | SNR LPA 9.06 vs. 6.25; p < 0.001) und auch qualitative Scores (3.97 vs. 2.24; p < 0.001) als bei einer Positionierung in der Aorta ascendens.
Bezüglich der Interrater-Reliabilität konnte in dieser Studie eine beachtliche Konkordanz bei der Analyse der Koronararterien (κ = 0.654) bzw. eine nahezu vollkommene Konkordanz bei der Analyse der Pulmonalarterien (κ = 0.846) festgestellt werden.
Die Strahlenbelastung war in beiden Gruppen nahezu identisch (4.13 mSv vs. 4.13 mSv; p = 0.501).
Schlussfolgerung
Für CT-Angiographien mit ausschließlich koronarer Indikation bedeutet dieses Ergebnis, dass die Positionierung der ROI für das Bolus-Tracking in der Aorta ascendens bzw. im linken Herzvorhof zu gleichwertigen Ergebnissen bezüglich der Bildqualität führen und somit die aktuell von vielen Untersuchern bevorzugte Positionierung der ROI in der Aorta ascendens weiterhin angewendet werden kann. Außerdem wurde in dieser Studie nachgewiesen, dass eine Positionierung der ROI im linken Herzvorhof zu einer besseren Beurteilbarkeit der Pulmonalarterien führt und deshalb bei der TRO-CTA angewendet werden sollte. Das Ergebnis zeigt aber auch, dass diese bei der TRO-CTA übliche Positionierung im linken Herzvorhof die Abbildung der Koronararterien nicht beeinträchtigt und der Einsatzbereich der TRO-CTA somit weiter ausgedehnt werden kann. / Background, aims and objectives
The bolus tracking technique is widely used for choosing the optimal starting point of data acquisition in coronary computed tomography angiography (CCTA) scans. It utilizes repeated scans at a predefined position in order to determine the concentration of contrast media in a region of interest (ROI). The scan starts automatically when a trigger threshold is reached. The effect by different ROI positioning on image quality in CCTA has not been systematically evaluated yet. In CCTA, the ROI may be positioned in the left atrium (LV) or the ascending aorta (AA).
In triple-rule-out-CTA (TRO-CTA), which allows for the evaluation of the pulmonary arteries and the thoracic aorta in addition to the coronary arteries, the ROI is mostly positioned in the left atrium. This choice of ROI positioning is empirical and its effect on the contrast filling of the pulmonary arteries has not been studied systematically.
In the current study we evaluated the effect of ROI positioning on image quality of the coronary arteries (left main coronary artery: LM; right coronary artery: RCA) and the pulmonary arteries (right pulmonary artery: RPA; left pulmonary artery: LPA), respectively.
Method
In the current monocentric retrospective study all patients underwent CCTA by step-and-shoot mode to rule out coronary artery disease at intermediate risk. We compared two groups of patients with ROI in the left atrium or the ascending aorta. Each group contained 96 patients, so overall 192 patients were included (122 male, 70 female, age 21 to 87 years, 61 years on average). To select pairs of patients with similar characteristics, propensity score matching was used. Matching criteria were height, body weight, sex and heart rate.
To evaluate the image quality, we used quantitative and qualitative scores. Signal-to-noise ratio (SNR), defined as the quotient of the mean signal intensity and the standard deviation of signal intensity, represented the quantitative score. For generating the qualitative score, overall image quality was assessed independently by two radiologists with ten and six years of experience with CCTA, respectively, using a five point Likert scale. This way, we compared the quality of the depiction of the coronary arteries on the one hand and of the pulmonary arteries on the other hand.
For statistical evaluation the Wilcoxon test was used to compare the quantitative and qualitative scores of the two groups. Regarding the qualitative analysis, interrater agreement was evaluated using weighted Cohens kappa.
Furthermore the radiation exposure was compared by viewing the dose-length products provided by the scanner and calculating the effective doses from these.
Results
In terms of the coronary arteries, there was no significant difference between both groups regarding quantitative (SNR AA 14.92 vs. 15.46; p = 0.619 | SNR LM 19.80 vs. 20.30; p = 0.661 | SNR RCA 24.34 vs. 24.30; p = 0.767) or qualitative scores (4.25 vs. 4.29; p = 0.672), respectively.
In terms of the pulmonary arteries, we can see significant higher quantitative (SNR RPA 8.70 vs. 5.89; p < 0.001 | SNR LPA 9.06 vs. 6.25; p < 0.001) and qualitative scores (3.97 vs. 2.24; p < 0.001) for bolus tracking positioning in the left atrium than for bolus tracking positioning in the ascending aorta.
The calculation of the interrater reliability showed substantial agreement for the analysis of the coronary arteries (κ = 0.654) and almost perfect agreement for the analysis of the pulmonary arteries (κ = 0.846).
The radiation exposure was almost identical in both groups of patients (4.13 mSv vs. 4.13 mSv; p = 0.501).
Conclusion
Bolus tracking positioning in the left atrium or the ascending aorta causes equivalent image quality of the coronary arteries, so that the current mostly preferred position for the exclusively consideration of the coronary arteries in the ascending aorta can be maintained. Positioning in the left atrium causes a significant higher image quality of the pulmonary arteries, therefore it should be used for TRO-CTA. In addition, the study shows that this for TRO-CTA mostly used position in the left atrium does not adversely affect depiction of the coronary arteries, if compared to conventional bolus tracking positioning in the ascending aorta. This implies that despite the improved depiction of the pulmonary arteries and the aorta in TRO-CTA, the depiction of the coronary arteries is not restricted. Consequently these results are a further argument for an extension of the indication for TRO-CTA in place of conventional CCTA in patients with acute thoracic pain.
|
7 |
Erkennung zerebraler Ischämie mittels computertomographischer Perfusionskartographie und CT-AngiographieGrieser, Christian 16 February 2006 (has links)
Zielsetzung In den Industrieländern stellt der Schlaganfall nach kardiovaskulären und Krebs – erkrankungen die dritthäufigste Krankheitsgruppe dar. Im Hinblick auf die Therapie des akuten Schlaganfalls muss die bildgebende Diagnostik schnell und einfach das Ausmaß der zerebralen Ischämie beschreiben können. Ziel dieser Studie war die Einführung und die Validierung eines CT – Protokolls, welches die Diagnostik des akuten Schlaganfalls verbessern soll. Zu diesem CT – Protokoll gehören ein Nativ – CT des Schädels, eine CT – Perfusionsuntersuchung und eine CT – Angiographie. Zusätzlich wollte diese Arbeit herausfinden, ob es physiologische Unterschiede zwischen der grauen Substanz und der weißen Substanz gibt, deren Kenntnis entscheidend für die Auswertung von computertomographischen Perfusionsuntersuchungen sind. Material und Methoden Insgesamt wurden 101 Patienten (Alter von 14 – 94 Jahre, mittleres Alter 69 Jahre) mit einem 8 – bzw. 16 – Zeilen – MSCT (Light Speed Ultra oder Light Speed pro 16, GE Healthcare), die zur Abklärung einer zerebralen Ischämie zum CT vorgestellt wurden, untersucht. Zuerst wurde eine native CT – Serie akquiriert. In der Untersuchung der zerebralen Perfusion wurde eine 2 cm breite Schicht über 60 sec mit 20 intermittierenden Aufnahmen während einer Injektion von 40 ml Kontrastmittel (Iopromid, Jodgehalt von 370 mg) aufgezeichnet. Daran an schloss sich eine CT – Angiographie Untersuchung. Zur Bestimmung des regionalen zerebralen Blutflusses, des regionalen zerebralen Blutvolumens und der mittleren Verweildauer wurden definierte Messfelder (Regions of Interests, ROIs) bestimmt und mit der kontralateralen Hemisphäre verglichen. Ergebnisse Es konnte gezeigt werden, dass der regionale zerebrale Blutfluss und das Blutvolumen im Bereich der Hirnrinde höher sind als im Hirnmark. Insgesamt wurden 66 Patienten mit einer zerebralen Ischämie wurden gefunden. Bei 22 dieser Patienten konnte ein Infarktgeschehen in der Nativ – CT diagnostiziert werden. Diese Ischämien ließen sich auch in der CT – Perfusion mit reduziertem regionalem zerebralem Blutfluss und verlängerter mittlerer Verweildauer nachweisen. Zusätzlich fanden sich 44 Patienten von 101 Untersuchten, die in der CT – Perfusion ein Perfusionsdefizit aufwiesen. Bei diesen Patienten ließ sich kein entsprechendes Korrelat in der Nativ – CT nachweisen. Für 38 dieser 44 Patienten konnte eine CTA durchgeführt werden, wovon für 35 Patienten ein Korrelat zwischen der CT – Perfusion und der CTA gefunden werden konnte. Schlussfolgerung Die Ergebnisse dieser Arbeit zeigen, dass es physiologische Unterschiede zwischen der Hirnrinde und dem Hirnmark gibt, deren Kenntnis für die Bewertung computertomographischer Perfusionsuntersuchungen eine wesentliche Interpretationshilfe darstellt. In Bezug auf die Diagnostik des akuten Schlaganfalls mit der Nativ – CT konnte diese Arbeit zeigen, dass der Nachweis von Infarktfrühzeichen eingeschränkt ist. Mit Hilfe der CT – Perfusion ist es möglich, anhand von zerebralen Perfusionswerten den Schweregrad und die Ausdehnung der zerebralen Ischämie zu bestimmen. Die CT – Angiographie zeigt eine gute Korrelation zur CT – Perfusion, es lassen sich zuverlässig Gefäßverschlüsse darstellen. Im Hinblick auf das weitere Therapievorgehen geben diese Methoden eine wichtige Hilfestellung, etwa zur Überlegung, ob man eine Lysetherapie durchführen sollte oder nicht. / Purpose Stroke is the third – leading cause of death in developed countries, following cardiovascular disease and cancer. There is a need for an easily and rapidly performed technique to detect cerebral ischemia in the first hours after its occurrence. The purpose of this study was the introduction and validation of a Stroke protocol which includes an unenhanced CT scan, a CT Perfusion and a CT Angiography. Furthermore, the purpose of this study was to determine if there is a difference between Perfusion parameters in gray and white matter, which are necessary to know while performing perfusion maps. Data and Methodology A total of 101 patients (age range 14 – 94, average age 69 years) were examined using multiple row CT (8 / 16 row multiple detector, light ultra speed or light speed 16, GE medical systems) for diagnosing cerebral ischemia. First a series of native images was acquired. During the examination of cerebral perfusion a 2 cm wide slab was recorded for 60 sec with 20 intermittent scans following injection of 40 ml of contrast medium with an iodine content of 370 mg / ml. By defining Regions of Interests (ROIs) regional cerebral blood flow (CBF), regional cerebral blood volume (CBV) and mean transit time (MTT) were calculated. Results Physiological regional cerebral blood flow and cerebral blood volume in gray matter were higher than in white matter. In total 66 patients with a cerebral ischemia were found. The unenhanced CT detected 22 patients with cerebral ischemia, which were confirmed by CT Perfusion in all cases. These ischemic areas revealed reduced regional CBF and extended MTT. Furthermore an ischemia correlative was discovered by perfusion analysis for 44 patients (out of 101 investigated) where the extent of the cerebral ischemia had not been visible by unenhanced CT. For 38 out of 44 patients with cerebral ischemia we were able to perform a CTA. For 35 out of these 38 patients, we found a sizable correlation between perfusion maps and CTA. Conclusion There are physiological differences for CT Perfusion parameters between gray and white matter, which are necessary to know for the interpretation of perfusion maps. However, this examination was able to show that unenhanced CT is not always capable of showing early CT signs. With the help of CT perfusion it is possible to detect the extent of acute cerebral ischemia. Furthermore, CT Angiography shows a sizable correlation compared to CT Perfusion. In conjunction, these methods give important Information for the early diagnosis and the therapeutic strategy of ischemic brain injury.
|
Page generated in 0.0487 seconds