• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimizing Hierarchical Storage Management For Database System

Liu, Xin 22 May 2014 (has links)
Caching is a classical but effective way to improve system performance. To improve system performance, servers, such as database servers and storage servers, contain significant amounts of memory that act as a fast cache. Meanwhile, as new storage devices such as flash-based solid state drives (SSDs) are added to storage systems over time, using the memory cache is not the only way to improve system performance. In this thesis, we address the problems of how to manage the cache of a storage server and how to utilize the SSD in a hybrid storage system. Traditional caching policies are known to perform poorly for storage server caches. One promising approach to solving this problem is to use hints from the storage clients to manage the storage server cache. Previous hinting approaches are ad hoc, in that a predefined reaction to specific types of hints is hard-coded into the caching policy. With ad hoc approaches, it is difficult to ensure that the best hints are being used, and it is difficult to accommodate multiple types of hints and multiple client applications. In this thesis, we propose CLient-Informed Caching (CLIC), a generic hint-based technique for managing storage server caches. CLIC automatically interprets hints generated by storage clients and translates them into a server caching policy. It does this without explicit knowledge of the application-specific hint semantics. We demonstrate using trace-based simulation of database workloads that CLIC outperforms hint-oblivious and state-of-the-art hint-aware caching policies. We also demonstrate that the space required to track and interpret hints is small. SSDs are becoming a part of the storage system. Adding SSD to a storage system not only raises the question of how to manage the SSD, but also raises the question of whether current buffer pool algorithms will still work effectively. We are interested in the use of hybrid storage systems, consisting of SSDs and hard disk drives (HDD), for database management. We present cost-aware replacement algorithms for both the DBMS buffer pool and the SSD. These algorithms are aware of the different I/O performance of HDD and SSD. In such a hybrid storage system, the physical access pattern to the SSD depends on the management of the DBMS buffer pool. We studied the impact of the buffer pool caching policies on the access patterns of the SSD. Based on these studies, we designed a caching policy to effectively manage the SSD. We implemented these algorithms in MySQL's InnoDB storage engine and used the TPC-C workload to demonstrate that these cost-aware algorithms outperform previous algorithms.
2

Resource and thermal management in 3D-stacked multi-/many-core systems

Zhang, Tiansheng 10 March 2017 (has links)
Continuous semiconductor technology scaling and the rapid increase in computational needs have stimulated the emergence of multi-/many-core processors. While up to hundreds of cores can be placed on a single chip, the performance capacity of the cores cannot be fully exploited due to high latencies of interconnects and memory, high power consumption, and low manufacturing yield in traditional (2D) chips. 3D stacking is an emerging technology that aims to overcome these limitations of 2D designs by stacking processor dies over each other and using through-silicon-vias (TSVs) for on-chip communication, and thus, provides a large amount of on-chip resources and shortens communication latency. These benefits, however, are limited by challenges in high power densities and temperatures. 3D stacking also enables integrating heterogeneous technologies into a single chip. One example of heterogeneous integration is building many-core systems with silicon-photonic network-on-chip (PNoC), which reduces on-chip communication latency significantly and provides higher bandwidth compared to electrical links. However, silicon-photonic links are vulnerable to on-chip thermal and process variations. These variations can be countered by actively tuning the temperatures of optical devices through micro-heaters, but at the cost of substantial power overhead. This thesis claims that unearthing the energy efficiency potential of 3D-stacked systems requires intelligent and application-aware resource management. Specifically, the thesis improves energy efficiency of 3D-stacked systems via three major components of computing systems: cache, memory, and on-chip communication. We analyze characteristics of workloads in computation, memory usage, and communication, and present techniques that leverage these characteristics for energy-efficient computing. This thesis introduces 3D cache resource pooling, a cache design that allows for flexible heterogeneity in cache configuration across a 3D-stacked system and improves cache utilization and system energy efficiency. We also demonstrate the impact of resource pooling on a real prototype 3D system with scratchpad memory. At the main memory level, we claim that utilizing heterogeneous memory modules and memory object level management significantly helps with energy efficiency. This thesis proposes a memory management scheme at a finer granularity: memory object level, and a page allocation policy to leverage the heterogeneity of available memory modules and cater to the diverse memory requirements of workloads. On the on-chip communication side, we introduce an approach to limit the power overhead of PNoC in (3D) many-core systems through cross-layer thermal management. Our proposed thermally-aware workload allocation policies coupled with an adaptive thermal tuning policy minimize the required thermal tuning power for PNoC, and in this way, help broader integration of PNoC. The thesis also introduces techniques in placement and floorplanning of optical devices to reduce optical loss and, thus, laser source power consumption. / 2018-03-09T00:00:00Z
3

Efficient L2 Cache Management to Boost GPGPU Performance

Candel Margaix, Francisco 02 September 2019 (has links)
Tesis por compendio / [ES] En los últimos años, la creciente necesidad de la capacidad de cómputo ha supuesto un reto que ha llevado a la industria a buscar arquitecturas alternativas a los procesadores superescalares con ejecución fuera de orden convencionales, con el objetivo de incrementar la potencia de cómputo con una mayor eficiencia energética. Las GPU, que hasta hace apenas una década se dedicaban exclusivamente a la aceleración de los gráficos en los computadores, han sido una de las arquitecturas alternativas más utilizadas durante varios años para alcanzar el mencionado objetivo. Una de las características particulares de las GPU es su gran ancho de banda para acceder a memoria principal, lo que les permite ejecutar un gran número de hilos de forma muy eficiente. Esta característica, así como su elevada potencia computacional ejecutando operaciones de coma flotante, ha originado la aparición del paradigma de computación denominado GPGPU computing, paradigma en el que las GPU realizan cómputo de propósito general. Las citadas características convierten a las GPU en dispositivos especialmente apropiados para la ejecución de aplicaciones masivamente paralelas que tradicionalmente se habían ejecutado en procesadores convencionales de altas prestaciones. El trabajo desarrollado en esta tesis persigue ayudar a mejorar las prestaciones de las GPU en la ejecución de aplicaciones GPGPU. Con este fin, como primer paso, se realiza un estudio de caracterización donde se identifican las características más importantes de estas aplicaciones desde el punto de vista de la jerarquía de memoria y su impacto en las prestaciones. Para ello, se utiliza un simulador detallado ciclo a ciclo donde se modela la arquitectura de una GPU reciente. El estudio revela que es necesario modelar de forma más detallada algunos componentes críticos de la jerarquía de memoria de las GPU para obtener resultados precisos. Los resultados obtenidos muestran que las prestaciones alcanzadas pueden variar hasta en un factor de 3× dependiendo de cómo se modelen estos componentes críticos. Por este motivo, como segundo paso antes de elaborar la propuesta de mejora, el trabajo se centra en determinar qué componentes de la jerarquía de memoria de la GPU necesitan modelarse con mayor detalle para mejorar la precisión de los resultados del simulador, y en mejorar los modelos existentes de estos componentes. Además, se realiza un estudio de validación que compara los resultados obtenidos con los modelos mejorados contra los de una GPU comercial real. Las mejoras implementadas reducen la desviación de los resultados del simulador sobre los resultados reales alrededor de un 96%. Finalmente, una vez mejorada la precisión del simulador, en esta tesis se presenta una propuesta innovadora, denominada FRC (siglas en inglés de Fetch and Replacement Cache), que mejora en gran medida la potencia computacional de la GPU, gracias a que aumenta el paralelismo en el acceso a memoria principal. La propuesta incrementa el número de accesos en paralelo a memoria principal mediante la aceleración de la gestión de las acciones de búsqueda y reemplazo relacionadas con los accesos que fallan en la cache. La propuesta FRC se basa en una pequeña estructura cache auxiliar que descongestiona el subsistema de memoria eficientemente, aumentando las prestaciones de la GPU hasta un 118% de media respecto al sistema base. Además, también reduce en 57% el consumo energético de la jerarquía de memoria. / [CA] En els últims anys, la creixent necessitat de capacitat de còmput ha suposat un repte que ha portat a la indústria a buscar arquitectures alternatives als processadors superescalars amb execució fora d'ordre convencionals, amb l'objectiu d'incrementar la potència de còmput alhora que s'aconsegueix una major eficiència energètica. Les arquitectures GPU, les quals fins fa només una dècada es dedicaven exclusivament a l'acceleració dels gràfics en els computadors, han sigut una de les alternatives més utilitzades durant alguns anys per a aconseguir l'esmentat objectiu. Una de les característiques particulars de les GPU és el seu elevat ample de banda per a accedir a memòria principal, la qual cosa permet executar un gran nombre de fils de forma molt eficient. Aquesta característica, així com la seua elevada potència computacional executant operacions de coma flotant, ha originat l'aparició del paradigma de computació anomenat GPGPU computing, paradigma on les GPU realitzen còmput de propòsit general. Les citades característiques converteixen a les GPU en dispositius especialment apropiats per a l'execució d'aplicacions massivament paral·leles que tradicionalment s'havien executat en processadors convencionals d'altes prestacions. El treball desenvolupat en aquesta tesi persegueix ajudar a millorar les prestacions de les GPU en l'execució de les aplicacions GPGPU. A aquest efecte, com a primer pas, es realitza un estudi de caracterització on s'identifiquen les característiques més importants d'aquestes aplicacions des del punt de vista de la jerarquia de memòria i el seu impacte en les prestacions. Per a això s'utilitza un simulador detallat cicle a cicle on es modela l'arquitectura d'una GPU recent. L'estudi revela que és necessari modelar de forma més detallada alguns components crítics de la jerarquia de memòria de les GPU per a obtindre resultats precisos. Els resultats obtinguts mostren que les prestacions aconseguides poden variar fins i tot en un factor de 3× depenent de com es modelen aquests components crítics. Per aquest motiu, com a segon pas abans d'elaborar la proposta de millora, el treball se centra en determinar quins components de la jerarquia de memòria de la GPU necessiten modelar-se amb major detall per a millorar la precisió dels resultats del simulador i en millorar els models existents d'aquests components. A més, es realitza un estudi de validació que compara els resultats obtinguts amb els models millorats contra els d'una GPU comercial real. Les millores implementades redueixen la desviació dels resultats del simulador sobre els resultats reals al voltant d'un 96%. Finalment, una vegada millorada la precisió del simulador, en aquesta tesi es presenta una proposta innovadora, denominada FRC (sigles en anglés de Fetch and Replacement Cache), que millora en gran manera la potència computacional de la GPU, gràcies a que augmenta el paral·lelisme en l'accés a memòria principal. La proposta incrementa el nombre d'accessos en paral·lel a memòria principal mitjançant l'acceleració de la gestió de les accions de recerca i reemplaçament relacionades amb els accessos que fallen en la cache. La proposta FRC es basa en una xicoteta estructura cache auxiliar que descongestiona el subsistema de memòria eficientment, augmentant les prestacions de la GPU fins a un 118% de mitjana respecte al sistema base. A més, també redueix, al voltant d'un 57%, el consum energètic de la jerarquia de memòria. / [EN] In recent years, the growing need for computing capacity has become a challenge that has led the industry to look for alternative architectures to conventional out-of-order superscalar processors, with the goal of enabling an increase of computing power while achieving higher energy efficiency. GPU architectures, which just a decade ago were applied to accelerate computer graphics exclusively, have been one of the most employed alternatives for several years to reach the mentioned goal. A particular characteristic of GPUs is their high main memory bandwidth, which allows executing a large number of threads in a very efficient way. This feature, as well as their high computational power regarding floating-point operations, have caused the emergence of the GPGPU computing paradigm, where GPU architectures perform general purpose computations. The aforementioned characteristics make GPU devices very appropriate for the execution of massively parallel applications that have been traditionally executed in conventional high-performance processors. The work performed in this thesis aims to help improve the performance of GPUs in the execution of GPGPU applications. To this end, as a first step, a characterization study is carried out. In this study, the most important features of GPGPU applications, with respect to the memory hierarchy and its impact on performance, are identified. For this purpose, a detailed cycle-accurate simulator is used to model the architecture of a recent GPU. The study reveals that it is necessary to model with more detail some critical components of the GPU memory hierarchy in order to obtain accurate results. In addition, it shows that the achieved benefits can vary up to a factor of 3× depending on how these critical components are modeled. Due to this reason, as a second step before realizing a novel proposal, the work in this thesis focuses on determining which components of the GPU memory hierarchy must be modeled with more detail to increase the accuracy of simulator results and improving the existing simulator models of these components. Moreover, a validation study is performed comparing the results obtained with the improved GPU models against those from a real commercial GPU. The implemented simulator improvements reduce the deviation of the results obtained with the simulator from results obtained with the real GPU by about 96%. Finally, once simulation accuracy is increased, this thesis proposes a novel approach, called FRC (Fetch and Replacement Cache), which highly improves the GPU computational power by enhancing main memory-level parallelism. The proposal increases the number of parallel accesses to main memory by accelerating the management of fetch and replacement actions corresponding to those cache accesses that miss in the cache. The FRC approach is based on a small auxiliary cache structure that efficiently unclogs the memory subsystem, enhancing the GPU performance up to 118% on average compared to the studied baseline. In addition, the FRC approach reduces the energy consumption of the memory hierarchy by a 57%. / Candel Margaix, F. (2019). Efficient L2 Cache Management to Boost GPGPU Performance [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/125477 / Compendio
4

Improving Last-Level Cache Performance in Single and Multi-Core Processsors

Manikanth, R January 2013 (has links) (PDF)
With off-chip memory access taking 100's of processor cycles, getting data to the processor in a timely fashion remains one of the key performance bottlenecks in current systems. With increasing core counts, this problem aggravates and the memory access latency becomes even more critical in multi-core systems. Thus the Last Level Cache (LLC) is of particular importance as any miss experienced at the LLC translates into a costly off-chip memory access. A combination of on-chip caches and prefacers is used to hide the off-chip memory access latency. While a hierarchy of caches focus on exploiting locality by retaining useful data, prefacers complement them by initating data accesses early for blocks that are likely to be accessed in future. In the first half of this thesis, we focus on improving the performance of LLC in single-core processors by focusing on prefetchers. In the case of multi-cores, the LLC is shared across many cores and therefore by many programs running on them. Thus, in the second half of this thesis, we focus on novel and efficient management mechanisms for shared LLC to improve the performance of programs running on the various cores. Prefetchers observe a training stream of primary misses in the cache and rely on the regularity present in them to predict and avoid future misses. We quantify the regularity present in the training stream using the information theoretic measure of entropy and study the impact on regularity by extending the training stream to include secondary misses and accesses. We also consider triggering prefetches on secondary misses. We _nd that the extended histories are more regular in general and it is beneficial to trigger prefetches on secondary misses also. However, the best design choice varies on a per-benchmark and prefetcher basis, necessitating a dynamic approach to identify the best prefetcher configuration. We propose an inexpensive bloom filter based dynamic mechanism to identify the best performing prefetch design point at run time. The adaptive scheme improves the performance in terms of Instructions Per Cycle (IPC) by 4.6% on average over a baseline prefetcher. This performance improvement is achieved along with a reduction in memory traffic requirements. It is well known that aggressive prefetching can harm performance due to increased contention for memory bandwidth and cache pollution. Prefetchers treat all loads as equal and try to eliminate as many misses as possible while certain (static) load instructions are known to be more performance critical. As our second contribution, we propose Focused Prefetching, a generic mechanism to introduce performance awareness in prefetching. We identify that a small number of static loads, referred to as Loads Incurring Majority of Commit Stalls (LIMCOS), account for a majority of the commit stalls in processors. We propose simple history-based classifier to identify LIMCOS with high accuracy. We use the classifier to focus the prefetching efforts on LIMCOS. This is achieved in a generic prefetcher-agnostic fashion by filtering the history used by the prefetchers. Focused Prefetching improves performance in terms of IPC by 9.8% for a set of memory intensive SPEC2000 workloads. This performance gain is achieved along with a reduction in memory traffic and an improvement in prefetch accuracy. In the second part of the thesis, we focus on improving the performance of shared caches in multi-core systems. Last level caches are affected by a lack of temporal locality in the access stream as the locality gets filtered out by caches above it. In the case of multi-cores, the interleaving of accesses from the various cores further adds to the problem. To overcome this, we propose a PC-Centric Next-Use Aware Cache Organization (NUcache) for shared caches in multi-cores, with an ability to retain a subset of cache blocks longer. This is achieved by a logical partitioning of the associative ways of a cache set into Main Ways and Deli Ways. While all the blocks have access to the Main Ways, blocks that are likely to be accessed in the near future (with shorter Next-Use distance) are candidates to be retained longer in the Deli Ways to eliminate future misses. We make use of the fact that a small number of PCs, referred to as delinquent PCs, bring in a majority of the cache blocks and learn the Next-Use characteristic of blocks brought in by them. We propose an intelligent cost-benefit based PC-selection mechanism to identify the best set of delinquent PCs that should have access to the Deli Ways to maximize the cache hits. Performance evaluation reveals that NUcache improves the performance (in terms of Average Normalized Turnaround Time, ANTT) of multi-programmed workloads by 6.2%, 13.9%, 15.8% and 19.6% in dual, quad, eight and sixteen core machines respectively. NUcache also performs better than some of the state-of-the-art cache partitioning mechanisms. The last part of the thesis deals with effective shared cache management in multi-core systems to achieve various performance objectives. Explicitly controlling the shared cache occupancy of competing applications is a flexible and practical way to achieve a variety of high level performance goals. Existing solutions control cache occupancy at a coarser granularity, do not scale well to large core counts and, in some cases, lack the flexibility to support a variety of performance goals. To overcome this, we propose Probabilistic Shared Cache Management (PriSM), a framework to manage the cache occupancy of different cores at cache block granularity by controlling their eviction probabilities. The proposed framework requires only simple hardware changes to implement, can scale to larger core count and is flexible enough to support a variety of performance goals like hit-maximization, fairness and QoS. PriSM with Hit-Maximization improves the performance (of multi-programmed workloads) in terms of ANTT by 16.5%, 18.7% and 12.7% over baseline LRU in eight, sixteen and thirty two core machines respectively.
5

DRAM-aware prefetching and cache management

Lee, Chang Joo, 1975- 11 February 2011 (has links)
Main memory system performance is crucial for high performance microprocessors. Even though the peak bandwidth of main memory systems has increased through improvements in the microarchitecture of Dynamic Random Access Memory (DRAM) chips, conventional on-chip memory systems of microprocessors do not fully take advantage of it. This results in underutilization of the DRAM system, in other words, many idle cycles on the DRAM data bus. The main reason for this is that conventional on-chip memory system designs do not fully take into account important DRAM characteristics. Therefore, the high bandwidth of DRAM-based main memory systems cannot be realized and exploited by the processor. This dissertation identifies three major performance-related characteristics that can significantly affect DRAM performance and makes a case for DRAM characteristic-aware on-chip memory system design. We show that on-chip memory resource management policies (such as prefetching, buffer, and cache policies) that are aware of these DRAM characteristics can significantly enhance entire system performance. The key idea of the proposed mechanisms is to send out to the DRAM system useful memory requests that can be serviced with low latency or in parallel with other requests rather than requests that are serviced with high latency or serially. Our evaluations demonstrate that each of the proposed DRAM-aware mechanisms significantly improves performance by increasing DRAM utilization for useful data. We also show that when employed together, the performance benefit of each mechanism is achieved additively: they work synergistically and significantly improve the overall system performance of both single-core and Chip MultiProcessor (CMP) systems. / text
6

Adaptive and intelligent memory systems / Système mémoire adaptatif intelligent

Sridharan, Aswinkumar 15 December 2016 (has links)
Dans cette thèse, nous nous sommes concentrés sur l'interférence aux ressources de la hiérarchie de la mémoire partagée : cache de dernier niveau et accès à la mémoire hors-puce dans le contexte des systèmes multicœurs à grande échelle. À cette fin, le premier travail a porté sur les caches de dernier niveau partagées, où le nombre d'applications partageant le cache pourrait dépasser l'associativité du cache. Pour gérer les caches dans de telles situations, notre solution évalue l'empreinte du cache des applications pour déterminer approximativement à quel point elles pourraient utiliser le cache. L'estimation quantitative de l'utilitaire de cache permet explicitement de faire respecter différentes priorités entre les applications. La seconde partie apporte une prédétection dans la gestion de la mémoire cache. En particulier, nous observons les blocs cache pré-sélectionnés pour présenter un bon comportement de réutilisation dans le contexte de caches plus grands. Notre troisième travail est axé sur l'interférence entre les demandes à la demande et les demandes de prélecture à l'accès partagé à la mémoire morte. Ce travail est basé sur deux observations fondamentales de la fraction des requêtes de prélecture générées et de sa corrélation avec l'utilité de prélecture et l'interférence causée par le prélecteur. Au total, deux observations conduisent à contrôler le flux de requêtes de prélecture entre les mémoires LLC et off-chip. / In this thesis, we have focused on addressing interference at the shared memory-hierarchy resources: last level cache and off-chip memory access in the context of large-scale multicore systems. Towards this end, the first work focused on shared last level caches, where the number of applications sharing the cache could exceed the associativity of the cache. To manage caches in such situations, our solution estimates the cache footprint of applications to approximate how well they could utilize the cache. Quantitative estimate of cache utility explicitly allows enforcing different priorities across applications. The second part brings in prefetch awareness in cache management. In particular, we observe prefetched cache blocks to exhibit good reuse behavior in the context of larger caches. Our third work focuses on addressing interference between on-demand and prefetch requests at the shared off-chip memory access. This work is based on two fundamental observations of the fraction of prefetch requests generated and its correlation with prefetch usefulness and prefetcher-caused interference. Altogether, two observations lead to control the flow of prefetch requests between LLC and off-chip memory.
7

Mécanismes de cache, traitement et diffusion de l'information dans les réseaux centrés sur l'information (ICN) / Cache, process and forward in Information-centric networking

Mekinda Mengue, Leonce 01 December 2016 (has links)
Ce travail de thèse s’est tout d’abord attaché à comprendre comment la prise en compte du temps de téléchargement, autrement dit, de la latence, lors de la mise en cache ou de la transmission de données pouvait contribuer aux performances du téléchargement dans les réseaux de caches dont ICN. Nous y introduisons un mécanisme distribué novateur qui décide de l’opportunité de conserver un objet en considérant que plus il a été long à télécharger plus intéressant il semble de le soumettre au cache sous-jacent. Nous montrons que ce nouveau mécanisme surpasse en de nombreux points l’état de l’art, que ce soit du point de vue de la réduction du temps moyen de téléchargement à partir de caches LRU, et de son écart-type (jusqu’à −60% ), que de celui de la vitesse de convergence vers ceux-ci. Dans une seconde phase, nous avons optimisé conjointement les fonctions de mises en cache et de distribution multi-chemin de requêtes de contenus. Troisièmement, nous avons étudié l’équité vis-à-vis des contenus au sein des réseaux de caches et plus particulièrement, d’ICN. Il en ressort que seule suffit une allocation équitable de la bande passante entre les contenus pour que l’équité d’ICN soit complète. Notre dernière contribution vise à aider au passage à l’échelle d’ICN dans contexte où deviennent réalités l’Internet des Objets et son espace de nommage illimité. Nous avons proposé une approche nouvelle au routage dans les réseaux centrés sur l’information, nommée AFFORD, qui combine apprentissage automatique et diffusion aléatoire. / This thesis investigates how making content caching and forwarding latency-aware can improve data delivery performance in Information-Centric Networks (ICN). We introduce a new mechanism that leverages retrieval time observations to decide whether to store an object in a network cache, based on the expected delivery time improvement. We demonstrate that our distributed latency-aware caching mechanism, LAC+, outperforms state of the art proposals and results in a reduction of the content mean delivery time and standard deviation of LRU caches by up to 60%, along with a fast convergence to these figures. In a second phase, we conjointly optimize the caching function and the multipath request forwarding strategies. To this purpose, we introduce the mixed forwarding strategy LB-Perf, directing the most popular content towards the same next hops to foster egress caches convergence, while load-balancing the others. Third, we address ICN fairness to contents. We show that traditional ICN caching, which favors the most popular objects, does not prevent the network from being globally fair, content-wise. The incidence of our findings comforts the ICN community momentum to improve LFU cache management policy and its approximations. We demonstrate that in-network caching leads to content-wise fair network capacity sharing as long as bandwidth sharing is content-wise fair. Finally, we contribute to the research effort aiming to help ICN Forwarding Information Base scale when confronted to the huge IoT era’s namespace.We propose AFFORD, a novel view on routing in named-data networking that combines machine learning and stochastic forwarding.

Page generated in 0.0894 seconds