• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 17
  • 12
  • Tagged with
  • 92
  • 92
  • 55
  • 48
  • 27
  • 24
  • 24
  • 24
  • 23
  • 23
  • 22
  • 22
  • 18
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Modélisation et validation des systèmes informatiques complexes

Kanso, Bilal 21 November 2011 (has links) (PDF)
La thèse s'inscrit dans le domaine de la modélisation et de la validation des systèmes modernes complexes. Les systèmes actuels sont en fait d'une complexité sans cesse croissante et formés de plus en plus de composants de natures différentes. Ceci rend leur processus de conception et de validation coûteux et difficile. Il semble être la simple façon permettant de faire face à cette hétérogénéité et à cette complexité est l'approche orientée composant. Suivant cette approche, le système est une entité formée par un ensemble des composants interconnectés. Les composants définissent une interface qui permet d'abstraire leur modèle interne (boîte noire), ce qui favorise la modularité et la réutilisation des composants. L'interaction entre ces composants se fait conformément à un ensemble des règles pré-établies, permettant ainsi d'avoir une vision globale de comportement du système. La conception ainsi que la validation des systèmes modernes reste alors problématique à cause de la nécessité de prendre en compte l'hétérogénéité des différents composants. Dans ce cadre, dans un premier temps, nous définirons un cadre formel générique dans lequel une large famille de formalismes de description de systèmes à base d'états peut être naturellement capturée. Ainsi, nous allons définir un ensemble de règles de composition permettant de mettre en correspondance les différents composants et ainsi de constituer un modèle global du système à concevoir. Dans un second temps, nous proposerons une approche de test d'intégration qui permet de valider le comportement d'un système complexe sous l'hypothèse que chaque composant est testé et validé. Cette approche vise à générer automatiquement des cas de test en s'appuyant sur un modèle global décrit dans notre framework du système sous test.
82

Résolution de systèmes polynomiaux et cryptologie sur les courbes elliptiques

Huot, Louise 13 December 2013 (has links) (PDF)
Depuis ces dix dernières années, les attaques sur le logarithme discret sur les courbes elliptiques (ECDLP) mettant en jeu la résolution de systèmes polynomiaux connaissent un large succès. C'est dans ce contexte que s'inscrit cette thèse dont les contributions sont doubles. D'une part, nous présentons de nouveaux outils de résolution de systèmes polynomiaux par bases de Gröbner. Nous montrons que la résolution de systèmes avec symétries est étroitement liée à la résolution de systèmes quasi-homogènes. Nous proposons ainsi de nouveaux résultats de complexité pour la résolution de tels systèmes. Nous nous intéressons également à l'étape bloquante de la résolution de systèmes : le changement d'ordre pour bases de Gröbner. La complexité classique de cette étape est cubique en le nombre de solutions et domine la complexité totale de la résolution. Nous proposons pour la première fois des algorithmes de changement d'ordre de complexité sous-cubique en le nombre de solutions. D'autre part, nous nous intéressons à l'attaque du logarithme discret sur les courbes elliptiques par calcul d'indice proposée par Gaudry. Nous mettons en évidence des familles de courbes elliptiques possédant des symétries particulières. Ces symétries impliquent un gain exponentiel sur la complexité de la résolution du ECDLP. Nous obtenons ainsi de nouveaux paramètres de sécurité pour certaines instances du ECDLP. Une des étapes principales de cette attaque nécessite le calcul de polynômes de sommation introduits par Semaev. Les symétries des courbes elliptiques binaires nous permettent d'élaborer un nouvel algorithme par évaluation-interpolation pour le calcul des polynômes de sommation. Munis de cet algorithme nous établissons un nouveau record pour le calcul de ces polynômes.
83

Formal reduction of differential systems : Singularly-perturbed linear differential systems and completely integrable Pfaffian systems with normal crossings / Réduction Formelle des systèmes différentiels linéaires singuliers : Systèmes différentiels linéaires singulièrement perturbés et systèmes de Pfaff complètement intégrables à croisements normaux

Maddah, Sumayya Suzy 25 September 2015 (has links)
Dans cette thèse, nous nous sommes intéressés à l'analyse locale de systèmes différentiels linéaires singulièrement perturbés et de systèmes de Pfaff complètement intégrables et multivariés à croisements normaux. De tels systèmes ont une vaste littérature et se retrouvent dans de nombreuses applications. Cependant, leur résolution symbolique est toujours à l'étude. Nos approches reposent sur l'état de l'art de la réduction formelle des systèmes linéaires singuliers d'équations différentielles ordinaires univariées (ODS). Dans le cas des systèmes différentiels linéaires singulièrement perturbés, les complications surviennent essentiellement à cause du phénomène des points tournants. Nous généralisons les notions et les algorithmes introduits pour le traitement des ODS afin de construire des solutions formelles. Les algorithmes sous-jacents sont également autonomes (par exemple la réduction de rang, la classification de la singularité, le calcul de l'indice de restriction). Dans le cas des systèmes de Pfaff, les complications proviennent de l'interdépendance des multiples sous-systèmes et de leur nature multivariée. Néanmoins, nous montrons que les invariants formels de ces systèmes peuvent être récupérés à partir d'un ODS associé, ce qui limite donc le calcul à des corps univariés. De plus, nous donnons un algorithme de réduction de rang et nous discutons des obstacles rencontrés. Outre ces deux systèmes, nous parlons des singularités apparentes des systèmes différentiels univariés dont les coefficients sont des fonctions rationnelles et du problème des valeurs propres perturbées. Les techniques développées au sein de cette thèse facilitent les généralisations d'autres algorithmes disponibles pour les systèmes différentiels univariés aux cas des systèmes bivariés ou multivariés, et aussi aux systèmes d''equations fonctionnelles. / In this thesis, we are interested in the local analysis of singularly-perturbed linear differential systems and completely integrable Pfaffian systems in several variables. Such systems have a vast literature and arise profoundly in applications. However, their symbolic resolution is still open to investigation. Our approaches rely on the state of art of formal reduction of singular linear systems of ordinary differential equations (ODS) over univariate fields. In the case of singularly-perturbed linear differential systems, the complications arise mainly from the phenomenon of turning points. We extend notions introduced for the treatment of ODS to such systems and generalize corresponding algorithms to construct formal solutions in a neighborhood of a singularity. The underlying components of the formal reduction proposed are stand-alone algorithms as well and serve different purposes (e.g. rank reduction, classification of singularities, computing restraining index). In the case of Pfaffian systems, the complications arise from the interdependence of the multiple components which constitute the former and the multivariate nature of the field within which reduction occurs. However, we show that the formal invariants of such systems can be retrieved from an associated ODS, which limits computations to univariate fields. Furthermore, we complement our work with a rank reduction algorithm and discuss the obstacles encountered. The techniques developed herein paves the way for further generalizations of algorithms available for univariate differential systems to bivariate and multivariate ones, for different types of systems of functional equations.
84

Bases of relations in one or several variables : fast algorithms and applications / Bases de relation en une ou plusieurs variables : algorithmes rapides et applications

Neiger, Vincent 30 November 2016 (has links)
Dans cette thèse, nous étudions des algorithmes pour un problème de recherche de relations à une ou plusieurs variables. Il généralise celui de calculer une solution à un système d’équations linéaires modulaires sur un anneau de polynômes, et inclut par exemple le calcul d’approximants de Hermite-Padé ou d’interpolants bivariés. Plutôt qu’une seule solution, nous nous attacherons à calculer un ensemble de générateurs possédant de bonnes propriétés. Précisément, l’entrée de notre problème consiste en un module de dimension finie spécifié par l’action des variables sur ses éléments, et en un certain nombre d’éléments de ce module ; il s’agit de calculer une base de Gröbner du modules des relations entre ces éléments. En termes d’algèbre linéaire, l’entrée décrit une matrice avec une structure de type Krylov, et il s’agit de calculer sous forme compacte une base du noyau de cette matrice. Nous proposons plusieurs algorithmes en fonction de la forme des matrices de multiplication qui représentent l’action des variables. Dans le cas d’une matrice de Jordan,nous accélérons le calcul d’interpolants multivariés sous certaines contraintes de degré ; nos résultats pour une forme de Frobenius permettent d’accélérer le calcul de formes normales de matrices polynomiales univariées. Enfin, dans le cas de plusieurs matrices denses, nous accélérons le changement d’ordre pour des bases de Gröbner d’idéaux multivariés zéro-dimensionnels. / In this thesis, we study algorithms for a problem of finding relations in one or several variables. It generalizes that of computing a solution to a system of linear modular equations over a polynomial ring, including in particular the computation of Hermite- Padéapproximants and bivariate interpolants. Rather than a single solution, we aim at computing generators of the solution set which have good properties. Precisely, the input of our problem consists of a finite-dimensional module given by the action of the variables on its elements, and of some elements of this module; the goal is to compute a Gröbner basis of the module of syzygies between these elements. In terms of linear algebra, the input describes a matrix with a type of Krylov structure, and the goal is to compute a compact representation of a basis of the nullspace of this matrix. We propose several algorithms in accordance with the structure of the multiplication matrices which specify the action of the variables. In the case of a Jordan matrix, we accelerate the computation of multivariate interpolants under degree constraints; our result for a Frobenius matrix leads to a faster algorithm for computing normal forms of univariate polynomial matrices. In the case of several dense matrices, we accelerate the change of monomial order for Gröbner bases of multivariate zero-dimensional ideals.
85

Méthodes symboliques pour les systèmesdifférentiels linéaires à singularité irrégulière / Symbolic methods for linear differential systems with irregular singularity

Saade, Joelle 05 November 2019 (has links)
Cette thèse est consacrée aux méthodes symboliques de résolution locale des systèmes différentiels linéaires à coefficients dans K = C((x)), le corps des séries de Laurent, sur un corps effectif C. Plus précisément, nous nous intéressons aux algorithmes effectifs de réduction formelle. Au cours de la réduction, nous sommes amenés à introduire des extensions algébriques du corps de coefficients K (extensions algébriques de C, ramifications de la variable x) afin d’obtenir une structure plus fine. Du point de vue algorithmique, il est préférable de retarder autant que possible l’introduction de ces extensions. Dans ce but, nous développons un nouvel algorithme de réduction formelle qui utilise l’anneau des endomorphismes du système, appelé « eigenring », afin de se ramener au cas d’un système indécomposable sur K. En utilisant la classification formelle donnée par Balser-Jurkat-Lutz, nous déduisons la structure de l’eigenring d’un système indécomposable. Ces résultats théoriques nous permettent de construire une décomposition sur le corps de base K qui sépare les différentes parties exponentielles du système et permet ainsi d’isoler dans des sous-systèmes, indécomposables sur K, les différentes extensions de corps qui peuvent apparaître afin de les traiter séparément. Dans une deuxième partie, nous nous intéressons à l’algorithme de Miyake pour la réduction formelle. Celle-ci est basée sur le calcul du poids et d’une suite de Volevic de la matrice de valuation du système. Nous donnons des interprétations en théorie de graphe et en algèbre tropicale du poids et suites de Volevic, et obtenons ainsi des méthodes de calculs efficaces sur le plan pratique, à l’aide de la programmation linéaire. Ceci complète une étape fondamentale dans l’algorithme de réduction de Miyake. Ces différents algorithmes sont implémentés sous forme de librairies pour le logiciel de calcul formel Maple. Enfin, nous présentons une discussion sur la performance de l’algorithme de réduction avec l’eigenring ainsi qu’une comparaison en terme de temps de calcul entre notre implémentation de l’algorithme de réduction de Miyake par la programmation linéaire et ceux de Barkatou et Pflügel. / This thesis is devoted to symbolic methods for local resolution of linear differential systems with coefficients in K = C((x)), the field of Laurent series, on an effective field C. More specifically, we are interested in effective algorithms for formal reduction. During the reduction, we are led to introduce algebraic extensions of the field of coefficients K (algebraic extensions of C, ramification of the variable x) in order to obtain a finer structure. From an algorithmic point of view, it is preferable to delay as much as possible the introduction of these extensions. To this end, we developed a new algorithm for formal reduction that uses the ring of endomorphisms of the system, called "eigenring". Using the formal classification given by Balser-Jurkat-Lutz, we deduce the structure of the eigenring of an indecomposable system. These theoretical results allow us to construct a decomposition on the base field K that separates the different exponential parts of the system and thus allows us to isolate, in indecomposable subsystems in K, the different algebraic extensions that can appear in order to treat them separately. In a second part, we are interested in Miyake’s algorithm for formal reduction. This algorithm is based on the computation of the Volevic weight and numbers of the valuation matrix of the system. We provide interpretations in graph theory and tropical algebra of the Volevic weight and numbers, and thus obtain practically efficient methods using linear programming. This completes a fundamental step in the Miyake reduction algorithm. These different algorithms are implemented as libraries for the computer algebra software Maple. Finally, we present a discussion on the performance of the reduction algorithm using the eigenring as well as a comparison in terms of timing between our implementation of Miyake’s reduction algorithm by linear programming and the algorithms of Barkatou and Pflügel.
86

Exact algorithms for determinantal varieties and semidefinite programming / Algorithmes exacts pour les variétés déterminantielles et la programmation semi-définie

Naldi, Simone 24 September 2015 (has links)
Dans cette thèse, nous nous intéressons à l'étude des structures déterminantielles apparaissent dans l'optimisation semi-définie (SDP), le prolongement naturel de la programmation linéaire au cône des matrices symétrique semi-définie positives. Si l'approximation d'une solution d'un programme semi-défini peut être calculé efficacement à l'aide des algorithmes de points intérieurs, ni des algorithmes exacts efficaces pour la SDP sont disponibles, ni une compréhension complète de sa complexité théorique a été atteinte. Afin de contribuer à cette question centrale en optimisation convexe, nous concevons un algorithme exact pour décider la faisabilité d'une inégalité matricielle linéaire (LMI) $A(x)\succeq 0$. Quand le spectraèdre associé (le lieu $\spec$ des $x \in \RR^n$ ou $A(x)\succeq 0$) n'est pas vide, la sortie de cet algorithme est une représentation algébrique d'un ensemble fini qui contient au moins un point $x \in \spec$: dans ce cas, le point $x$ minimise le rang de $A(x)$ sur $\spec$. La complexité est essentiellement quadratique en le degré de la représentation en sortie, qui coïncide, expérimentalement, avec le degré algébrique de l'optimisation semi-définie. C'est un garantie d'optimalité de cette approche dans le contexte des algorithmes exacts pour les LMI et la SDP. Remarquablement, l'algorithme ne suppose pas la présence d'un point intérieur dans $\spec$, et il profite de l'existence de solutions de rang faible de l'LMI $A(x)\succeq 0$. Afin d'atteindre cet objectif principal, nous développons une approche systématique pour les variétés déterminantielles associées aux matrices linéaires. Nous prouvons que décider la faisabilité d'une LMI $A(x)\succeq 0$ se réduit à calculer des points témoins dans les variétés déterminantielles définies sur $A(x)$. Nous résolvons ce problème en concevant un algorithme exact pour calculer au moins un point dans chaque composante connexe réelle du lieu des chutes de rang de $A(x)$. Cet algorithme prend aussi avantage des structures supplémentaires, et sa complexité améliore l'état de l'art en géométrie algébrique réelle. Enfin, les algorithmes développés dans cette thèse sont implantés dans une nouvelle bibliothèque Maple appelé Spectra, et les résultats des expériences mettant en évidence la meilleure complexité sont fournis. / In this thesis we focus on the study of determinantal structures arising in semidefinite programming (SDP), the natural extension of linear programming to the cone of symetric positive semidefinite matrices. While the approximation of a solution of a semidefinite program can be computed efficiently by interior-point algorithms, neither efficient exact algorithms for SDP are available, nor a complete understanding of its theoretical complexity has been achieved. In order to contribute to this central question in convex optimization, we design an exact algorithm for deciding the feasibility of a linear matrix inequality (LMI) $A(x) \succeq 0$. When the spectrahedron $\spec = \{x \in \RR^n \mymid A(x) \succeq 0\}$ is not empty, the output of this algorithm is an algebraic representation of a finite set meeting $\spec$ in at least one point $x^*$: in this case, the point $x^*$ minimizes the rank of the pencil on the spectrahedron. The complexity is essentially quadratic in the degree of the output representation, which meets, experimentally, the algebraic degree of semidefinite programs associated to $A(x)$. This is a guarantee of optimality of this approach in the context of exact algorithms for LMI and SDP. Remarkably, the algorithm does not assume the presence of an interior point in the spectrahedron, and it takes advantage of the existence of low rank solutions of the LMI. In order to reach this main goal, we develop a systematic approach to determinantal varieties associated to linear matrices. Indeed, we prove that deciding the feasibility of a LMI can be performed by computing a sample set of real solutions of determinantal polynomial systems. We solve this problem by designing an exact algorithm for computing at least one point in each real connected component of the locus of rank defects of a pencil $A(x)$. This algorithm admits as input generic linear matrices but takes also advantage of additional structures, and its complexity improves the state of the art in computational real algebraic geometry. Finally, the algorithms developed in this thesis are implemented in a new Maple library called {Spectra}, and results of experiments highlighting the complexity gain are provided.
87

Méthodes effectives en théorie de Galois différentielle et applications à l'intégrabilité de systèmes dynamiques

Weil, Jacques-Arthur 09 December 2013 (has links) (PDF)
Mes recherches portent essentiellement sur l''elaboration de m'ethodes de calcul formel pour l''etude constructive des 'equations diff'erentielles lin'eaires, plus particuli'erement autour de la th'eorie de Galois diff'erentielle. Celles-ci vont du d'eveloppement de la th'eorie sous-jacente aux algorithmes, en incluant leur implantation en Maple. Ces travaux ont en commun une approche exp'erimentale des math'ematiques o'u l'on met l'accent sur l'examen d'exemples les plus pertinents possibles. L''etude d'etaill'ee de cas provenant de la m'ecanique rationnelle ou de la physique th'eorique nourrit en retour le d'eveloppement de th'eories math'ematiques idoines. Mes travaux s'articulent suivant trois grands th'emes interd'ependants : la th'eorie de Galois diff'erentielle effective, ses applications 'a l'int'egrabilit'e de syst'emes hamiltoniens et des applications en physique th'eorique.
88

Calcul des invariants de groupes de permutations par transformée de Fourier / Calculate invariants of permutation groups by Fourier Transform

Borie, Nicolas 07 December 2011 (has links)
Cette thèse porte sur trois problèmes en combinatoire algébrique effective et algorithmique.Les premières parties proposent une approche alternative aux bases de Gröbner pour le calcul des invariants secondaires des groupes de permutations, par évaluation en des points choisis de manière appropriée. Cette méthode permet de tirer parti des symétries du problème pour confiner les calculs dans un quotient de petite dimension, et ainsi d'obtenir un meilleur contrôle de la complexité algorithmique, en particulier pour les groupes de grande taille. L'étude théorique est illustrée par de nombreux bancs d'essais utilisant une implantation fine des algorithmes. Un prérequis important est la génération efficace de vecteurs d'entiers modulo l'action d'un groupe de permutation, dont l'algorithmique fait l'objet d'une partie préliminaire.La quatrième partie cherche à déterminer, pour un certain quotient naturel d'une algèbre de Hecke affine, quelles spécialisations des paramètres aux racines de l'unité donne un comportement non générique.Finalement, la dernière partie présente une conjecture sur la structure d'une certaine $q$-déformation des polynômes harmoniques diagonaux en plusieurs paquets de variables pour la famille infinie de groupes de réflexions complexes.Tous ces chapitres s'appuient fortement sur l'exploration informatique, et font l'objet de multiples contributions au logiciel Sage. / This thesis concerns algorithmic approaches to three challenging problems in computational algebraic combinatorics.The firsts parts propose a Gröbner basis free approach for calculating the secondary invariants of a finite permutation group, proceeding by using evaluation at appropriately chosen points. This approach allows for exploiting the symmetries to confine the calculations into a smaller quotient space, which gives a tighter control on the algorithmic complexity, especially for large groups. The theoretical study is illustrated by extensive benchmarks using a fine implementation of algorithms. An important prerequisite is the generation of integer vectors modulo the action of a permutation group, whose algorithmic constitute a preliminary part of the thesis.The fourth part of this thesis is determining for a certain interesting quotient of an affine Hecke algebra exactly which root-of-unity specialization of its parameter lead to non-generic behavior.Finally, the last part presents a conjecture on the structure of certain q-deformed diagonal harmonics in many sets of variables for the infinite family of complex reflection groups.All chapters proceed widely by computer exploration, and most of established algorithms constitute contributions of the software Sage.
89

Certified numerics in function spaces : polynomial approximations meet computer algebra and formal proof / Calcul numérique certifié dans les espaces fonctionnels : Un trilogue entre approximations polynomiales rigoureuses, calcul symbolique et preuve formelle

Bréhard, Florent 12 July 2019 (has links)
Le calcul rigoureux vise à produire des représentations certifiées pour les solutions de nombreux problèmes, notamment en analyse fonctionnelle, comme des équations différentielles ou des problèmes de contrôle optimal. En effet, certains domaines particuliers comme l’ingénierie des systèmes critiques ou les preuves mathématiques assistées par ordinateur ont des exigences de fiabilité supérieures à ce qui peut résulter de l’utilisation d’algorithmes relevant de l’analyse numérique classique.Notre objectif consiste à développer des algorithmes à la fois efficaces et validés / certifiés, dans le sens où toutes les erreurs numériques (d’arrondi ou de méthode) sont prises en compte. En particulier, nous recourons aux approximations polynomiales rigoureuses combinées avec des méthodes de validation a posteriori à base de points fixes. Ces techniques sont implémentées au sein d’une bibliothèque écrite en C, ainsi que dans un développement de preuve formelle en Coq, offrant ainsi le plus haut niveau de confiance, c’est-à-dire une implémentation certifiée.Après avoir présenté les opérations élémentaires sur les approximations polynomiales rigoureuses, nous détaillons un nouvel algorithme de validation pour des approximations sous forme de séries de Tchebychev tronquées de fonctions D-finies, qui sont les solutions d’équations différentielles ordinaires linéaires à coefficients polynomiaux. Nous fournissons une analyse fine de sa complexité, ainsi qu’une extension aux équations différentielles ordinaires linéaires générales et aux systèmes couplés de telles équations. Ces méthodes dites symboliques-numériques sont ensuite utilisées dans plusieurs problèmes reliés : une nouvelle borne sur le nombre de Hilbert pour les systèmes quartiques, la validation de trajectoires de satellites lors du problème du rendez-vous linéarisé, le calcul de polynômes d’approximation optimisés pour l’erreur d’évaluation, et enfin la reconstruction du support et de la densité pour certaines mesures, grâce à des techniques algébriques. / Rigorous numerics aims at providing certified representations for solutions of various problems, notably in functional analysis, e.g., differential equations or optimal control. Indeed, specific domains like safety-critical engineering or computer-assisted proofs in mathematics have stronger reliability requirements than what can be achieved by resorting to standard numerical analysis algorithms. Our goal consists in developing efficient algorithms, which are also validated / certified in the sense that all numerical errors (method or rounding) are taken into account. Specifically, a central contribution is to combine polynomial approximations with a posteriori fixed-point validation techniques. A C code library for rigorous polynomial approximations (RPAs) is provided, together with a Coq formal proof development, offering the highest confidence at the implementation level.After providing basic operations on RPAs, we focus on a new validation algorithm for Chebyshev basis solutions of D-finite functions, i.e., solutions of linear ordinary differential equations (LODEs) with polynomial coefficients. We give an in-depth complexity analysis, as well as an extension to general LODEs, and even coupled systems of them. These symbolic-numeric methods are finally used in several related problems: a new lower bound on the Hilbert number for quartic systems; a validation of trajectories arising in the linearized spacecraft rendezvous problem; the design of evaluation error efficient polynomial approximations; and the support and density reconstruction of particular measures using algebraic techniques.
90

Approximations polynomiales rigoureuses et applications

Joldes, Mioara Maria 26 September 2011 (has links) (PDF)
Quand on veut évaluer ou manipuler une fonction mathématique f, il est fréquent de la remplacer par une approximation polynomiale p. On le fait, par exemple, pour implanter des fonctions élémentaires en machine, pour la quadrature ou la résolution d'équations différentielles ordinaires (ODE). De nombreuses méthodes numériques existent pour l'ensemble de ces questions et nous nous proposons de les aborder dans le cadre du calcul rigoureux, au sein duquel on exige des garanties sur la précision des résultats, tant pour l'erreur de méthode que l'erreur d'arrondi.Une approximation polynomiale rigoureuse (RPA) pour une fonction f définie sur un intervalle [a,b], est un couple (P, Delta) formé par un polynôme P et un intervalle Delta, tel que f(x)-P(x) appartienne à Delta pour tout x dans [a,b].Dans ce travail, nous analysons et introduisons plusieurs procédés de calcul de RPAs dans le cas de fonctions univariées. Nous analysons et raffinons une approche existante à base de développements de Taylor.Puis nous les remplaçons par des approximants plus fins, tels que les polynômes minimax, les séries tronquées de Chebyshev ou les interpolants de Chebyshev.Nous présentons aussi plusieurs applications: une relative à l'implantation de fonctions standard dans une bibliothèque mathématique (libm), une portant sur le calcul de développements tronqués en séries de Chebyshev de solutions d'ODE linéaires à coefficients polynômiaux et, enfin, un processus automatique d'évaluation de fonction à précision garantie sur une puce reconfigurable.

Page generated in 0.0526 seconds