Spelling suggestions: "subject:"calcul paradifferential"" "subject:"calcul paradifférentiel""
1 |
Mathematical analysis of models of non-homogeneous fluids and of hyperbolic equations with low regularity coefficients / Analyse mathématique des modèles de fluids non-homogènes et d'équations hyperboliques à coefficients peu réguliersFanelli, Francesco 28 May 2012 (has links)
Cette thèse est consacrée à l'étude des opérateurs strictement hyperboliques à coefficients peu réguliers, aussi bien qu'à l'étude du système d'Euler incompressible à densité variable. Dans la première partie, on montre des estimations a priori pour des opérateurs strictement hyperboliques dont les coefficients d'ordre le plus grand satisfont une condition de continuité log-Zygmund par rapport au temps et une condition de continuité log-Lipschitz par rapport à la variable d'espace. Ces estimations comportent une perte de dérivées qui croît en temps. Toutefois, elles sont suffisantes pour avoir encore le caractère bien posé du problème de Cauchy associé dans l'espace H^inf (pour des coefficients du deuxième ordre ayant assez de régularité).Dans un premier temps, on considère un opérateur complet en dimension d'espace égale à 1, dont les coefficients du premier ordre étaient supposés hölderiens et celui d'ordre 0 seulement borné. Après, on traite le cas général en dimension d'espace quelconque, en se restreignant à un opérateur de deuxième ordre homogène: le passage à la dimension plus grande exige une approche vraiment différente. Dans la deuxième partie de la thèse, on considère le système d'Euler incompressible à densité variable. On montre son caractère bien posé dans des espaces de Besov limites, qui s'injectent dans la classe des fonctions globalement lipschitziennes, et on établit aussi des bornes inférieures pour le temps de vie de la solution ne dépendant que des données initiales. Cela fait, on prouve la persistance des structures géométriques, comme la régularité stratifiée et conormale, pour les solutions de ce système. À la différence du cas classique de densité constante, même en dimension 2 le tourbillon n'est pas transporté par le champ de vitesses. Donc, a priori on peut s'attendre à obtenir seulement des résultats locaux en temps. Pour la même raison, il faut aussi laisser tomber la structure des poches de tourbillon. La théorie de Littlewood-Paley et le calcul paradifférentiel nous permettent d'aborder ces deux différents problèmes. En plus, on a besoin aussi d'une nouvelle version du calcul paradifférentiel, qui dépend d'un paramètre plus grand que ou égal à 1, pour traiter les opérateurs à coefficients peu réguliers. Le cadre fonctionnel adopté est celui des espaces de Besov, qui comprend en particulier les ensembles de Sobolev et de Hölder. Des classes intermédiaires de fonctions, de type logarithmique, entrent, elles aussi, en jeu / The present thesis is devoted both to the study of strictly hyperbolic operators with low regularity coefficients and of the density-dependent incompressible Euler system. On the one hand, we show a priori estimates for a second order strictly hyperbolic operator whose highest order coefficients satisfy a log-Zygmund continuity condition in time and a log-Lipschitz continuity condition with respect to space. Such an estimate involves a time increasing loss of derivatives. Nevertheless, this is enough to recover well-posedness for the associated Cauchy problem in the space $H^infty$ (for suitably smooth second order coefficients).In a first time, we consider acomplete operator in space dimension $1$, whose first order coefficients were assumed Hölder continuous and that of order $0$only bounded. Then, we deal with the general case of any space dimension, focusing on a homogeneous second order operator: the step to higher dimension requires a really different approach. On the other hand, we consider the density-dependent incompressible Euler system. We show its well-posedness in endpoint Besov spaces embedded in the class of globally Lipschitz functions, producing also lower bounds for the lifespan of the solution in terms of initial data only. This having been done, we prove persistence of geometric structures, such as striated and conormal regularity, for solutions to this system. In contrast with the classical case of constant density, even in dimension $2$ the vorticity is not transported by the velocity field. Hence, a priori one can expect to get only local in time results. For the same reason, we also have to dismiss the vortex patch structure. Littlewood-Paley theory and paradifferential calculus allow us to handle these two different problems .A new version of paradifferential calculus, depending on a parameter $ggeq1$, is also needed in dealing with hyperbolic operators with nonregular coefficients. The general framework is that of Besov spaces, which includes in particular Sobolev and Hölder sets. Intermediate classes of functions, of logaritmic type, come into play as well
|
Page generated in 0.0954 seconds