• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 12
  • 10
  • 8
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 219
  • 77
  • 75
  • 46
  • 43
  • 23
  • 21
  • 20
  • 20
  • 19
  • 19
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Cloning and characterization of ethephon-inducible genes from sweet potato leaves

Wu, Hsin-tai 25 January 2010 (has links)
According to our previous results, ethephon-induced sweet potato leaf senescence and senescence-associated gene SPCP1 expression was affected by reduced glutathione, EGTA, and cycloheximide (Chen et al., 2009). These data suggest that calcium influx, reactive oxygen species (ROS) and de novo synthesized proteins can affect ethephon-mediated effects. Therefore, PCR-selective substractive hybridization and RACE-PCR methods were used to clone 5 full-length cDNAs encoded putative calmodulin (SPCAM), catalase (SPCATA), anionic peroxidase (SPPA), ACC oxidase (SPACO), and DSS1-like protein (SPDSS1) from mixed samples of ethephon-treated leaves for 6 and 24 hours. The ORF of SPCAM contains 450 nucleotides and encodes 149 amino acids. There are 4 putative EF-motifs in the deduced protein structure. SPCAM exhibited amino acid sequence identity with isolated Arabidopsis calmodulins from 48% to 100%, and was completely the same as CaM7 calmodulin. The ORF of SPCATA contains 1479 nucleotides and encodes 492 amino acids. SPCAM exhibited high amino acid sequence identity with other plant catalases from 71.2% to 80.9%, and had the highest identity with mangrove catalase. The ORF of SPPA contains 1068 nucleotides and encodes 355 amino acids. SPPA exhibited amino acid sequence identity with other published sweet potato peroxidase isoforms from 28.7% to 97.5%, and had the highest identity with anionic peroxidase SWPA4. The ORF of SPACO contains 930 nucleotides and encodes 309 amino acids. SPACO exhibited high amino acid sequence identity with other plant ACC oxidases from 62.3% to 81.5%, and had the highest identity with tobacco ACC oxidase. The ORF of SPDSS1 contains 228 nucleotides and encodes 75 amino acids. SPDSS1 exhibited amino acid sequence identity with other DSS1 from 25.2% to 62.3%, and had the highest identity with maize DSS1. The chlorophyll contents and Fv/Fm values were significantly reduced, however, the isolated gene expression was remarkably enhanced in natural senescent leaves. DAB staining showed that H2O2 amount was remarkably elevated at S3 senescent leaves compared to leaves of the other developmental stages. Evan blue staining also demonstrated that S3 senescent leaf had more cell death compared to S0 young leaves. In addition ethephon-induced leaf senescence exhibited similar results. The chlorophyll contents and Fv/Fm values were significantly reduced, however, the isolated gene expression was remarkably enhanced in ethephon-treated leaves compared to dark control. DAB staining showed that H2O2 amount was remarkably elevated at 72 hours in ethephon-treated leaves compared to dark control. Evan blue staining also demonstrated that ethephon-treated leaf for 72 hours had more cell death compared to dark control. Based on these data we conclude that SPCAM, SPCATA, SPPA, SPACO and SPDSS1 gene expression were significantly increased in natural and ethephon-induced senescent leaves. The possible functions of these isolated genes in association with events in ethephon-induced leaf senescence, including calcium influx, ROS elevation or scavenge, and following signaling will be discussed.
132

Ca²⁺/calmodulin dependent protein kinase II subcellular re-distribution and activation of protein phosphatase after a brief pentylenetetrazol seizure potential role in kindling /

Dong, Yu. January 2003 (has links)
Thesis (Ph. D.)--Medical College of Ohio, 2003. / "In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Medical Sciences." Major advisor: Howard Rosenberg. Document formatted into pages: iv, 144 p. Title from title page of PDF document. Includes bibliographical references (p. 104-132).
133

Die Bedeutung der Kalzium/Calmodulin-abhängigen Proteinkinase II für den gestörten Kalziumstoffwechsel der isolierten Rattenherzmuskelzelle unter Doxorubicinbehandlung / Ca2+/Calmodulin-dependent protein kinase II contributes to impaired Ca2+ handling properties in isolated rat cardiomyocytes under doxorubicin treatment

Köhler, Anne Christine 08 July 2013 (has links)
No description available.
134

Structural - functional Analysis of Plant Cyclic Nucleotide Gated Ion Channels

Abdel Hamid, Huda 02 August 2013 (has links)
The Arabidopsis thaliana genome encodes twenty putative cyclic nucleotide-gated channel (CNGC) genes. Studies on A. thaliana CNGCs so far have revealed their ability to selectively transport cations that play a role in various stress responses and development, however, the regulation of plant CNGCs is not yet fully understood. Thus, in this study I have attempted to analyze the structure-function relationship of AtCNGCs, mainly by using suppressor mutants of the rare gain-of function mutant, cpr22. The A. thaliana mutant cpr22 resulted from an approximately 3kb deletion that fused the 5’ half and the 3’ half of two CNGC-encoding genes, AtCNGC11 and AtCNGC12, respectively. The expression of this chimeric CNGC, the AtCNGC11/12 gene confers easily detectable characteristics such as stunted morphology with curly leaves and hypersensitive response-like spontaneous lesion formation. Through a suppressor screen, twenty nine new alleles were identified in AtCNGC11/12. Since the cytosolic C-terminal region contains important regulatory domains, such as a cyclic-nucleotide binding domain, eleven cytosolic C-terminal mutants, S17, S35, S81, S83, S84, S100, S135, S136, S137, S140 and S144, were analyzed. A detailed analysis of two mutants, S100 (AtCNGC11/12:G459R) and S137 (AtCNGC11/12:R381H), suggested that G459 and R381 are important for basic channel function rather than channel regulation. Site-directed mutagenesis and fast protein liquid chromatography (FPLC) showed that these two amino acids influence both intra- and inter-subunit interactions that are involved in stabilizing the tertiary structure of the channel. In addition, calmodulin binding domain(s) (CaMBD) and cyclic nucleotide binding domain(s) (CNBD) of some of AtCNGCs were studied using computational modeling and biophysical analyses. The data indicated that AtCNGC12 has two CaMBDs in both N- and C- cytosolic termini, whereas AtCNGC11 has only one CaMBD located in the N-terminal region of the channel. In addition, a thermal shift assay suggested that AtCNGC12 has higher affinity to bind cAMP over cGMP. Taken together, the current study contributes to identify key residues for channel function and provides new insights into CaMBD and CNBD in plant CNGCs.
135

Structural - functional Analysis of Plant Cyclic Nucleotide Gated Ion Channels

Abdel Hamid, Huda 02 August 2013 (has links)
The Arabidopsis thaliana genome encodes twenty putative cyclic nucleotide-gated channel (CNGC) genes. Studies on A. thaliana CNGCs so far have revealed their ability to selectively transport cations that play a role in various stress responses and development, however, the regulation of plant CNGCs is not yet fully understood. Thus, in this study I have attempted to analyze the structure-function relationship of AtCNGCs, mainly by using suppressor mutants of the rare gain-of function mutant, cpr22. The A. thaliana mutant cpr22 resulted from an approximately 3kb deletion that fused the 5’ half and the 3’ half of two CNGC-encoding genes, AtCNGC11 and AtCNGC12, respectively. The expression of this chimeric CNGC, the AtCNGC11/12 gene confers easily detectable characteristics such as stunted morphology with curly leaves and hypersensitive response-like spontaneous lesion formation. Through a suppressor screen, twenty nine new alleles were identified in AtCNGC11/12. Since the cytosolic C-terminal region contains important regulatory domains, such as a cyclic-nucleotide binding domain, eleven cytosolic C-terminal mutants, S17, S35, S81, S83, S84, S100, S135, S136, S137, S140 and S144, were analyzed. A detailed analysis of two mutants, S100 (AtCNGC11/12:G459R) and S137 (AtCNGC11/12:R381H), suggested that G459 and R381 are important for basic channel function rather than channel regulation. Site-directed mutagenesis and fast protein liquid chromatography (FPLC) showed that these two amino acids influence both intra- and inter-subunit interactions that are involved in stabilizing the tertiary structure of the channel. In addition, calmodulin binding domain(s) (CaMBD) and cyclic nucleotide binding domain(s) (CNBD) of some of AtCNGCs were studied using computational modeling and biophysical analyses. The data indicated that AtCNGC12 has two CaMBDs in both N- and C- cytosolic termini, whereas AtCNGC11 has only one CaMBD located in the N-terminal region of the channel. In addition, a thermal shift assay suggested that AtCNGC12 has higher affinity to bind cAMP over cGMP. Taken together, the current study contributes to identify key residues for channel function and provides new insights into CaMBD and CNBD in plant CNGCs.
136

Metabolisme protéico-muscular a l'obesitat

Yebras Cañellas, Martí 29 March 1995 (has links)
Resultats anteriors mostraven que rates amb obesitat nutricional ("dieta de cafeteria") tenien un perfil metabòlic d'estalvi de nitrogen, mentre que pel model d'obesitat genètica (Zucker (fa/fa)) es suggeria un malbaratament de nitrogen. Es mostra una reducció en la taxa de recanvi d'alanina per l'animal sencer en el model d'obesitat nutricional, i un increment en el model d'obesitat genètica. La fracció anabòlica de la taxa és la responsable d'aquestes alteracions, suggerint perturbacions en el metabolisme de proteïnes.S'estudiaren músculs individuals, escollits per a assolir un rang ampli de perfils fibril·lars. L'obesitat genètica causa una reducció del contingut en proteïna, principalment en els músculs lents i oxidatius, la qual cosa correlaciona amb un increment en l'activitat µ-calpaïna, congruent amb una taxa de degradació de proteïnes incrementada Per contra, a l'obesitat nutricional, s'observa un increment en el contingut de proteïnes, fonamentalment en els músculs ràpids i glicolítics que no es va poder associar a variacions en l'activitat del sistema calpaïna, congruent amb una taxa de síntesi de proteïnes incrementada.
137

Fibronectin-dependent activation of CaMK-II promotes focal adhesion disassembly by inducing tyrosine dephosphorylation of FAK and paxillin /

Easley, Charles Allen, January 2008 (has links)
Thesis (Ph.D.)--Virginia Commonwealth University, 2008. / Prepared for: Dept. of Biochemistry. Bibliography : leaves 84-91.
138

Mechanisms of shear stress-mediated ERK1/2 modulating signal transduction pathways in endothelial cells /

Traub, Oren. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [133]-143).
139

Calmodulin binding to cellular FLICE like inhibitory protein modulates Fas-induced signaling and tumorigenesis in cholangiocarcinoma

Pawar, Pritish Subhash. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed Sept. 19, 2008). Includes bibliographical references.
140

The role of the IQ motif, a protein kinase C and calmodulin regulatory domain, in neuroplasticity, RNA processing, and RNA metabolism /

Prichard, Lisa. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves 130-135).

Page generated in 0.0385 seconds