Spelling suggestions: "subject:"calvin benson bassham"" "subject:"calvin benson basham""
1 |
Stable Carbon Isotope Discrimination by Form IC RubisCO from <em>Rhodobacter sphaeroides</em>Thomas, Phaedra 16 July 2008 (has links)
Variations in the relative amounts of ¹²C and ¹³C in microbial biomass can be used to infer the pathway(s) autotrophs use to fix and assimilate dissolved inorganic carbon. Discrimination against ¹³C by the enzymes catalyzing autotrophic carbon fixation is a major factor dictating the stable carbon isotopic composition (δ¹³C = {[¹³C/¹²Csample/¹³C/¹²Cstandard] - 1} X 1000) of biomass. Six different forms of ribulose 1,5-bisphosphate carboxylase/oxygenase or RubisCO (IA, IB, IC, ID, II, and III), the carboxylase of the Calvin-Benson-Bassham cycle (CBB), are utilized by algae and autotrophic bacteria that rely on the CBB cycle for carbon fixation. To date, isotope discrimination has been measured for form IA, IB, and II RubisCOs. Isotopic discrimination, expressed as ε values (={[¹²k/¹³k] - 1} X 1000; ¹²k and ¹³k = rates of ¹²C and ¹³C fixation) range from 18 to 29‰, explaining the variation in biomass δ¹³C values of autotrophs that utilize these enzymes. Isotope discrimination by form IC RubisCO has not been measured, despite the presence of this enzyme in many proteobacteria of ecological interest, including marine manganese-oxidizing bacteria, some nitrifying and nitrogen-fixing bacteria, and extremely metabolically versatile organisms such as Rhodobacter sphaeroides. The purpose of this work is to determine the e value for the form IC RubisCO enzyme from R. sphaeroides. Under standard conditions (pH 7.5 and 5 mM DIC), form IC RubisCO had an ε value of 29‰. Sampling the full phylogenetic breadth of RubisCO enzymes for isotopic discrimination makes it possible to constrain the range of δ¹³C values of organisms fixing carbon via the Calvin-Benson-Bassham cycle. These results are helpful for determining the degree to which CBB cycle carbon fixation contributes to primary and secondary productivity in microbially-dominated food webs.
|
2 |
Stable carbon isotope discrimination by rubisco enzymes relevant to the global carbon cycleBoller, Amanda J. 01 January 2012 (has links)
Five different forms of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO; IA, IB, IC, ID, II), the carboxylase of the Calvin-Benson-Bassham cycle (CBB), are utilized by plants, algae and autotrophic bacteria for carbon fixation. Discrimination against 13C by RubisCO is a major factor dictating the stable carbon isotopic composition (δ13C = {[13C/12C sample/13C/12C standard] - 1} X 1000) of biomass. To date, isotope discrimination, expressed as ε values (={[12k/13k] - 1} X 1000; 12k and 13k = rates of 12C and 13C fixation) has been measured for form IA, IB, and II RubisCOs from only a few species, with ε values ranging from 18 to 29 /. The aim of this study was to better characterize form ID and IC RubisCO enzymes, which differ substantially in primary structure from the IB enzymes present in many cyanobacteria and organisms with green plastids, by measuring isotopic discrimination and kinetic parameters (KCO2 and Vmax). Several major oceanic primary producers, including diatoms,
coccolithophores, and some dinoflagellates have form ID RubisCO, while form IC RubisCO is present in many proteobacteria of ecological interest, including marine manganese-oxidizing bacteria, some nitrifying and nitrogen-fixing bacteria, and extremely metabolically versatile organisms such as Rhodobacter sphaeroides. The ε -
values of the form ID RubisCO from the coccolithophore, Emiliania huxleyi and the diatom, Skeletonema costatum (respectively 11.1 / and 18.5 /) were measured along with form IC RubisCO from Rhodobacter sphaeroides and Ralstonia eutropha (respectively 22.9 / and 19.0 /). Isotopic discrimination by these form ID/IC RubisCOs is low when compared to form IA/IB RubisCOs (22-29 /). Since the measured form ID RubisCOs are less selective against 13C, oceanic carbon cycle models based on 13C values may need to be reevaluated to accommodate lower ε values of RubisCOs found in major
marine algae. Additionally, with further isotopic studies, the extent to which form IC RubisCO from soil microorganisms contributes to the terrestrial carbon sink may also be determined.
|
3 |
Improving photofermentative hydrogen production through metabolic engineering and DOE (Design of Experiments)Liu, Yuan 03 1900 (has links)
A l’heure actuelle, les biocarburants renouvelables et qui ne nuit pas à l'environnement sont à l'étude intensive en raison de l'augmentation des problèmes de santé et de la diminution des combustibles fossiles. H2 est l'un des candidats les plus prometteurs en raison de ses caractéristiques uniques, telles que la densité d'énergie élevée et la génération faible ou inexistante de polluants. Une façon attrayante pour produire la H2 est par les bactéries photosynthétiques qui peuvent capter l'énergie lumineuse pour actionner la production H2 avec leur système de nitrogénase. L'objectif principal de cette étude était d'améliorer le rendement de H2 des bactéries photosynthétiques pourpres non sulfureuses utilisant une combinaison de génie métabolique et le plan des expériences.
Une hypothèse est que le rendement en H2 pourrait être améliorée par la redirection de flux de cycle du Calvin-Benson-Bassham envers du système de nitrogénase qui catalyse la réduction des protons en H2. Ainsi, un PRK, phosphoribulose kinase, mutant « knock-out » de Rhodobacter capsulatus JP91 a été créé. L’analyse de la croissance sur des différentes sources de carbone a montré que ce mutant ne peut croître qu’avec l’acétate, sans toutefois produire d' H2. Un mutant spontané, YL1, a été récupéré qui a retenu l'cbbP (codant pour PRK) mutation d'origine, mais qui avait acquis la capacité de se développer sur le glucose et produire H2. Une étude de la production H2 sous différents niveaux d'éclairage a montré que le rendement d’YL1 était de 20-40% supérieure à la souche type sauvage JP91. Cependant, il n'y avait pas d'amélioration notable du taux de production de H2. Une étude cinétique a montré que la croissance et la production d'hydrogène sont fortement liées avec des électrons à partir du glucose principalement dirigés vers la production de H2 et la formation de la biomasse. Sous des intensités lumineuses faibles à intermédiaires, la production d'acides organiques est importante, ce qui suggère une nouvelle amélioration additionnel du rendement H2 pourrait être possible grâce à l'optimisation des processus.
Dans une série d'expériences associées, un autre mutant spontané, YL2, qui a un phénotype similaire à YL1, a été testé pour la croissance dans un milieu contenant de l'ammonium. Les résultats ont montré que YL2 ne peut croître que avec de l'acétate comme source de carbone, encore une fois, sans produire de H2. Une incubation prolongée dans les milieux qui ne supportent pas la croissance de YL2 a permis l'isolement de deux mutants spontanés secondaires intéressants, YL3 et YL4. L'analyse par empreint du pied Western a montré que les deux souches ont, dans une gamme de concentrations d'ammonium, l'expression constitutive de la nitrogénase. Les génomes d’YL2, YL3 et YL4 ont été séquencés afin de trouver les mutations responsables de ce phénomène. Fait intéressant, les mutations de nifA1 et nifA2 ont été trouvés dans les deux YL3 et YL4. Il est probable qu'un changement conformationnel de NifA modifie l'interaction protéine-protéine entre NifA et PII protéines (telles que GlnB ou GlnK), lui permettant d'échapper à la régulation par l'ammonium, et donc d'être capable d'activer la transcription de la nitrogénase en présence d'ammonium. On ignore comment le nitrogénase synthétisé est capable de maintenir son activité parce qu’en théorie, il devrait également être soumis à une régulation post-traductionnelle par ammonium. Une autre preuve pourrait être obtenue par l'étude du transcriptome d’YL3 et YL4. Une première étude sur la production d’ H2 par YL3 et YL4 ont montré qu'ils sont capables d’une beaucoup plus grande production d'hydrogène que JP91 en milieu d'ammonium, qui ouvre la porte pour les études futures avec ces souches en utilisant des déchets contenant de l'ammonium en tant que substrats.
Enfin, le reformage biologique de l'éthanol à H2 avec la bactérie photosynthétique, Rhodopseudomonas palustris CGA009 a été examiné. La production d'éthanol avec fermentation utilisant des ressources renouvelables microbiennes a été traitée comme une technique mature. Cependant, la plupart des études du reformage de l'éthanol à H2 se sont concentrés sur le reformage chimique à la vapeur, ce qui nécessite généralement une haute charge énergetique et résultats dans les émissions de gaz toxiques. Ainsi le reformage biologique de l'éthanol à H2 avec des bactéries photosynthétiques, qui peuvent capturer la lumière pour répondre aux besoins énergétiques de cette réaction, semble d’être plus prometteuse. Une étude précédente a démontré la production d'hydrogène à partir d'éthanol, toutefois, le rendement ou la durée de cette réaction n'a pas été examiné. Une analyse RSM (méthode de surface de réponse) a été réalisée dans laquelle les concentrations de trois facteurs principaux, l'intensité lumineuse, de l'éthanol et du glutamate ont été variés. Nos résultats ont montré que près de 2 moles de H2 peuvent être obtenus à partir d'une mole d'éthanol, 33% de ce qui est théoriquement possible. / Currently, renewable and environmentally friendly biofuels are under intensive study due to increasing health concerns and diminishing fossil fuels. H2 is one of the most promising candidates due to its unique characteristics, such as a high energy density and low to non-existent generation of pollutants. One attractive way to produce H2 is through photosynthetic bacteria which can capture light energy to drive H2 production with their nitrogenase system. The major aim of this study was to improve H2 yield of the purple non-sulfur photosynthetic bacteria using a combination of metabolic engineering and design of experiments.
One hypothesis was that H2 yield could be improved by redirection of Calvin-Benson-Bassham cycle flux to the nitrogenase system which catalyzes the reduction of protons to H2. Thus, a PRK, phosphoribulose kinase, knock out mutant of Rhodobacter capsulatus JP91 was created. Analysis of growth with different carbon sources showed that this mutant could only grow in acetate medium without, however, producing any H2. A spontaneous mutant, YL1, was recovered which retained the original cbbP (encoding PRK) mutation, but which had gained the ability to grow on glucose and produce H2. A study of H2 production under different illumination levels showed that the yield of YL1 was 20-40% greater than the wild type JP91 strain. However, there was no appreciable improvement of the H2 production rate. A kinetic study showed that growth and hydrogen production are strongly linked with electrons from glucose being mostly directed to H2 production and biomass formation. Under low to intermediate light intensities, the production of organic acids was significant, suggesting further improvement of H2 yield is possible by process optimization.
In a related series of experiments, another spontaneous mutant, YL2, which has a similar phenotype to YL1, was tested for growth in ammonium-containing media. The results showed that YL2 could only grow with acetate as carbon source, again, without producing any H2. Prolonged incubation in media not supporting growth of YL2 enabled the isolation of two interesting secondary spontaneous mutants, YL3 and YL4. Western blot analysis showed that both strains had constitutive nitrogenase expression under a range of ammonium concentrations. The genomes of YL2, YL3 and YL4 were sequenced in order to find the mutations responsible for this phenomenon. Interestingly, mutations of nifA1 and nifA2 were found in both YL3 and YL4. It is likely that a conformational change of NifA alters the protein-protein interaction between NifA and PII proteins (such as GlnB or GlnK), enabling it to escape regulation by ammonium and thus to be capable of activating nitrogenase transcription in the presence of ammonium. It is not clear how the synthesized nitrogenase is able to maintain its activity since in theory it should also be subject to posttranslational regulation by ammonium. Further evidence could be obtained by studying the transcriptome of YL3 and YL4. An initial study of H2 production by YL3 and YL4 showed that they are capable of much greater hydrogen production than JP91 in ammonium medium, which opens the door for future studies with these strains using ammonium-containing wastes as substrates.
Finally, the biological reformation of ethanol to H2 with the photosynthetic bacterium, Rhodopseudomonas palustris CGA009 was examined. Ethanol production with microbial fermentation using renewable resources has been treated as a mature technique. However, most studies of the reformation of ethanol to H2 have focused on chemical steam reforming, which usually requires a high energy input and results in toxic gas emission. Thus biological reformation of ethanol to H2 with photosynthetic bacteria, which can capture light to meet the energy requirement of this reaction, seems to be more promising. A previous study had demonstrated hydrogen production from ethanol, however, the yield or the duration of this reaction were not examined. A RSM (response surface methodology) analysis was carried out in which three key factors, light intensity, ethanol and glutamate concentrations were varied. Our results showed that nearly 2 moles of H2 could be obtained from one mole of ethanol, 33% of what is theoretically possible.
|
4 |
Untersuchungen zur genetischen Regulation der CO<sub>2</sub>-Assimilation in <i>Ralstonia</i> spp. / Investigations into the genetic regulation of CO<sub>2</sub> assimilation in <i>Ralstonia</i> spp.Höfle, Caroline 02 November 2005 (has links)
No description available.
|
Page generated in 0.0505 seconds