• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 302
  • 43
  • 40
  • 29
  • 23
  • 21
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 534
  • 534
  • 97
  • 85
  • 60
  • 59
  • 48
  • 47
  • 44
  • 39
  • 37
  • 34
  • 30
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Assessment of hypoxoside and its derivatives as anti-cancer drugs.

Xulu, Bongiwe Ziphelele. January 2013 (has links)
Extracts of the African potato have long been believed to have anti-cancer properties. The aim of the current research was to isolate hypoxoside (HYP) from Hypoxis hemerocallidea (African potato) and synthesize the dimethyl (DMH) and decaacetyl (DAH) derivatives and to test their selective cytotoxicity on a model consisting of a normal (MCF10A) and premalignant, invasive breast epithelial cells (MCF10A-NeoT). Hypoxoside was extracted from the H. hemerocallidea corms using ethanol, purified using a C-18 reverse phase column and the compound examined by nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry and found to be of high purity. This was also the case for the synthesized compounds. To assess possible selective effects (cytotoxicity) of derivatized and underivatized hypoxoside, effects on the metabolism of premalignant and normal cells were assessed using the 3-(4,5-dimethylthiazol-2-yl)-5-(3- carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Effects on cell number (total counts) and cell death [trypan blue and propidium iodide (PI) staining for dead cells versus a lack of staining for live cells] were, thereafter, assessed. Imaging of live adherent cells was also carried out using acridine orange (AO) and PI for live and dead cells (respectively). Propidium iodide staining of detached cells was carried out for flow cytometric determination of cell death (PI indicating early apoptotic or late apoptotic/necrotic cells). After treatment of normal (MCF10A) breast epithelial cells and premalignant cHa-rastransfected (MCF10A-NeoT) derivative breast epithelial cells with HYP, DMH and the DAH derivative, the MTS assay and the Duncan‟s multiple range, analysis of variance (ANOVA) post hoc analysis of the MTS results revealed that only the 150 and 300 µM DAH derivative had a statistically significant effect on the metabolic activity of the abnormal cell line relative to the dimethyl sulfoxide (DMSO) and revealed no significant effect on the normal MCF- 10A cell line after treatment with any of the test compounds. Supravital PI staining of adherent cells seemed to indicate a far higher rate of induction of cell death in abnormal cells than evident in the MTS assay and the PI-based flow cytometry or the trypan blue exclusion assays and need re-investigating, though result trends were similar. Total cell counts, show that HYP and its derivatives appear to increase both cancer and normal cell proliferation significantly, except in the case of DAH at 150 and 300 μM in the MCF10A-NeoT, without affecting the MCF-10A cell line. The trypan blue method for detection of cell death, together with total cell counts, the Duncan‟s analysis of MTS results and a 24 hour exposure to test compounds, seems to constitute an optimal system for drug screening and indicates the statistically significant selective toxicity of the DAH compound at 150 and 300 μM in the MCF10A-NeoT, suggesting that the DAH derivative at 150 and 300 µM would have significant, selective therapeutic potential on Ras-related malignancies. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
212

A chemical and pharmacological investigation of three South African plants.

Khorombi, Tendani Eric. January 2006 (has links)
Three plant species (Phylica paniculata Willd., Pergularia daemia Forssk. and Monsonia / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
213

Computational nanoscience and molecular modelling of shock wave interactions with biological membranes

Sourmaidou, Damiani January 2011 (has links)
Lateral diffusion of membrane components (lipids and proteins) is an important membrane property to measure since the essential process of absorption of anti-cancer and other drugs -some of which are not soluble in lipids and therefore would not be able to penetrate the cell membrane through passive diffusion- lies on it. In particular, the procedure of diffusion into the cell cytoplasm is reliant on free volumes in the membrane (passive diffusion) as well as carrier proteins (facilitated diffusion). By enhancing the mobility of lipids and/or proteins, the possibility of the carrier protein to "encapsulate" pharmacological components maxim- izes, as a "scanning" of the proteins gets performed due to the fluid phase of a biological membrane. At the same time, the increased mobility of the lipids facilitates the passage of lipid-soluble molecules into the cell. Thus, given that the success of anticancer treatments heavily depends on their absorption by the cell, a significant enhancement of the cell mem- brane permeability (permeabilisation) is rendered vital to the applicability of the technique. For this reason, there is augmented interest in combined methods such as Nanotechnology based drug delivery that is focused on the development of optimally designed therapeutic agents along with the application of shock waves to enhance the membrane permeability to the agents. This study examines the impact of shock waves on a numerical model of a biological membrane. Cont/d.
214

Characterization, DNA Binding and Cleavage Activities of New Prodigiosin and Tambjamine Analogues and Their Cu²⁺ and Zn²⁺ Complexes

Chichetu, Karen 24 July 2015 (has links)
Prodigiosins and tambjamines are natural compounds from bacterial and marine sources belonging to a family containing a common 4-methoxy-2,2'-bipyrrole core. These compounds have received a lot of interest due to their promising biological activities. Studies have suggested DNA as a potential therapeutic target for the natural prodigiosin and tambjamine due to their ability to facilitate oxidative DNA cleavage in the presence of Cu2+. Based on this we sought to study the metal binding activity of new prodigiosin and tambjamine analogues. A new prodigiosin analogue was synthesized and complexed with Cu2+. This revealed 1:1 complex formation between the tripyrrole and Cu2+ that was confirmed by mass spectra and NMR spectra analysis. In addition in situ studies also revealed that our new analogues of prodigiosin cannot bind Zn2+ when the methoxy group on ring B is replaced by an alkyl group or when one of the ring nitrogens is methylated. Our UV-Vis experiments with calf thymus DNA showed that prodigiosins and tambjamines bind DNA mainly through an external mode, suggesting that hydrogen bonding between the pyrrole ring nitrogens and the bases of DNA takes precedence over stacking interactions. For the new Cu2+ complex synthesized however, we observed spectral changes that suggest intercalation into DNA. DNA cleavage experiments revealed that the prodigiosin-Cu complex is able to convert supercoiled DNA into its linear form. The data from the gel shift assays fit well to a first-order consecutive reaction model. In addition to preformed metal complexes, we showed DNA cleavage by in situ complexation of the ligands in the presence of Cu2+. However, although we showed Zn2+ complex formation with prodigiosin analogues, in situ studies did not show induction of DNA cleavage by Zn2+ complexes under our experimental conditions.
215

In vitro photodynamic effect of gallium, indium and iron phthalocyanine chloride on different cancer cell lines

Maduray, Kaminee January 2015 (has links)
Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy: Biotechnology, Durban University of Technology, Durban, South Africa, 2015. / Photodynamic therapy (PDT) is emerging as a viable alternative to invasive anti-cancer treatment regimens such as surgery, chemotherapy or radiotherapy. A series of metal – based phthalocyanine complexes have been discovered that may be used as a drug or photosensitizer in photodynamic therapy for the treatment of cancers. During photodynamic therapy the photosensitizer is administrated intravenously or topically to the patient before laser treatment at an appropriate wavelength is delivered to the cancerous site to activate the photosensitizer. The activated photosensitizer will react with oxygen typically present in the cancerous tissue to produce reactive oxygen species for the eradication of the cancerous tissue. This is the first study where gallium (GaPcCl), indium (InPcCl) and iron (FePcCl) Pc chloride complexes were used for photodynamic research. These metal – based phthalocyanine complexes were investigated using different cancer cell lines (Caco-2, MCF-7, melanoma and A549). Also, the baseline cellular uptake and photodynamic effect of these complexes were established on healthy normal cells (human fibroblast cells). Fluorescent spectrophotometry showed that all three photosensitizers accumulated in a time-dependent manner in Caco-2, MCF-7, melanoma and A549 cancer cells, as well as in healthy normal fibroblast cell in amounts which increased over a period of 24 hours, with emission peaking at 24 hours for all cell lines. Dark toxicity effects and photodynamic therapy efficacy were established with a MTT assay. High concentrations of inactive GaPcCl, InPcCl and FePcCl was toxic to Caco-2, melanoma, A549 and fibroblast cells. However, all three photosensitizers were in its inactive state at low and high photosensitizing concentrations were highly toxic to MCF-7 cancer cells. On the other hand, in vitro photodynamic therapy treatment with both low and high concentrations of GaPcCl, InPcCl and FePcCl were observed to be potently cytotoxic towards all four cancer cell lines upon exposure to laser light for 22 seconds (2.5 J/cm2), 39 seconds (4.5 J/cm2) and 74 seconds (8.5 J/cm2). These results revealed that all three photosensitizers reacts to photodynamic therapy in a concentration-dependent (photosensitizer) and dose-dependent (light dose/time) manner. At 24 hours after photodynamic therapy, the most effective treatment parameters were laser treatment for 74 seconds with FePcCl concentrations from 60 µg/ml - 100 µg/ml which resulted in 0% cell survival of Caco-2 cancer cells. A short laser treatment time of 74 seconds for activation of FePcCl (20 µg/ml) resulted in 0% cell survival of MCF-7 cancer cells. Similarly, FePcCl (40 µg/ml - 100 µg/ml) activated for 22 seconds, 39 seconds and 74 seconds resulted in 100% cell death of A549 cancer cells. Photodynamic therapy treatment with GaPcCl and InPcCl were very effective in reducing the cell viability of melanoma cancer cells. Healthy normal fibroblast cells survived in vitro photodynamic therapy treatment with all three photosensitizers much better than the cancer (Caco-2, MCF-7, melanoma and A549) cells. This confirms the previously reported results that photosensitizers such as phthalocyanines and its metal-based complexes preferentially accumulate in cancer cells than normal healthy cells. All three photosensitizers localized in mitochondria and lysosomes of the Caco-2, MCF-7 and A549 cancer cells. In melanoma cancer cells InPcCl also localized in the mitochondria and lysosome, but GaPcCl and FePcCl localized in mitochondria only. Apoptosis was identified via microscopical and flow cytometric investigations, as the dominant mode of cell death induced by GaPcCl, InPcCl and FePcCl mediated photodynamic therapy in cancer cell lines tested. Therefore, this study concludes that GaPcCl, InPcCl and FePcCl are effective photosensitizers for the in vitro PDT treatment of cancer cells. The effective in vitro PDT treatment for each cell line was dependent on the photosensitizer concentration and illumination period for each of the different photosensitizers. / D
216

Influence of the Vitamin D3 Analog EB 1089 on Senescence and Cell Death Pathways in the Response of Breast Tumor Cells to Ionizing Radiation

DeMasters, Gerald Alan 01 January 2006 (has links)
A senescence-like growth arrest succeeded by rapid recovery of proliferative capacity is observed in MCF-7 breast tumor cells exposed to fractionated radiation (5 x 2Gy) alone. Exposure to the vitamin D3 analog EB 1089 (100nM) prior to irradiation converts the initial growth arrest response to cell death in part through the inhibition of radiation-induced senescence and promotion of both apoptotic and autophagic cell death. More importantly, EB 1089 was shown to profoundly reduce the rate of recovery following fractionated irradiation. The effect of EB 1089 on the temporal response to radiation is also observed in MCF-7 cells expressing caspase 3, but not in cells where p53 function is abrogated. EB 1089 does not increase radiation-induced DNA damage or inhibit DNA repair, as measured by both the alkaline unwinding assay and 53BPl fociformation. EB 1089 inhibits radiation-induced down-regulation of myc; however, doxycyclin-induction of myc does not mimic the radiosensitizing effects of EB 1089. EB1089 increases radiation-induced reactive oxygen species (ROS) generation; however, both free radical scavengers, N-acetyl cysteine (NAC)and reduced glutathione (GSH), fail to attenuate the radio-sensitizing effects of EB 1089. These studies rule out increased radiation-induced DNA damage, inhibition of DNA repair, inhibition of myc suppression,or increased ROS generation as the mechanism(s) responsible for the radiosensitizingeffects of EB 1089. However, EB 1089 does cause an increase in radiation-induced ceramide generation in the cell, while the ceramide synthase inhibitor, fumonisin B1, inhibits apoptosis and increases cell viability following treatment with EB 1089 plus radiation. Signaling pathways that promote ceramide generation and autophagic cell death may provide insights as to the mechanisms underlying the interaction(s) between EB 1089 or vitamin D3 and radiation in breast tumor cells.
217

Depression, Anxiety, Self-Esteem, and Coping in Children and Adolescents Newly Diagnosed with Cancer and Children and Adolescents on Cancer Treatment for a Period of Seven Months or Longer

Jones, Tracy L. 05 1900 (has links)
Differences in self-reported depression, anxiety, self-esteem, and coping were evaluated in two groups of pediatric oncology patients: newly diagnosed (less than six months post-diagnosis) (n=5) and patients on cancer treatment for seven months or longer (n=5). Participants (6 males, 4 females, ages 7-17 years) completed the Children's Depression Inventory (CDI), the State-Trait Anxiety Inventory for Children (STAIC), and the Culture-Free Self-Esteem Inventory (CFSEI-2); nine of the ten participants discussed in a semi-structured interview their personal experiences and feelings about having cancer. Although the newly diagnosed group had a higher mean score on the CDI than the 7 months or greater group, the difference was not significant (p = .054). The newly diagnosed group also had higher mean state and trait anxiety scores on the STAIC, indicating higher anxiety levels, and a slightly lower CFSEI-2 mean score, indicating slightly lower self-esteem than the 7 months or greater group, but differences were not at a statistically significant level (p>.05).
218

Optimal multi-drug chemotherapy control scheme for cancer treatment : design and development of a multi-drug feedback control scheme for optimal chemotherapy treatment for cancer : evolutionary multi-objective optimisation algorithms were used to achieve the optimal parameters of the controller for effective treatment of cancer with minimum side effects

Algoul, Saleh January 2012 (has links)
Cancer is a generic term for a large group of diseases where cells of the body lose their normal mechanisms for growth so that they grow in an uncontrolled way. One of the most common treatments of cancer is chemotherapy that aims to kill abnormal proliferating cells; however normal cells and other organs of the patients are also adversely affected. In practice, it's often difficult to maintain optimum chemotherapy doses that can maximise the abnormal cell killing as well as reducing side effects. The most chemotherapy drugs used in cancer treatment are toxic agents and usually have narrow therapeutic indices, dose levels in which these drugs significantly kill the cancerous cells are close to the levels which sometime cause harmful toxic side effects. To make the chemotherapeutic treatment effective, optimum drug scheduling is required to balance between the beneficial and toxic side effects of the cancer drugs. Conventional clinical methods very often fail to find drug doses that balance between these two due to their inherent conflicting nature. In this investigation, mathematical models for cancer chemotherapy are used to predict the number of tumour cells and control the tumour growth during treatment. A feedback control method is used so as to maintain certain level of drug concentrations at the tumour sites. Multi-objective Genetic Algorithm (MOGA) is then employed to find suitable solutions where drug resistances and drug concentrations are incorporated with cancer cell killing and toxic effects as design objectives. Several constraints and specific goal values were set for different design objectives in the optimisation process and a wide range of acceptable solutions were obtained trading off among different conflicting objectives. Abstract v In order to develop a multi-objective optimal control model, this study used proportional, integral and derivative (PID) and I-PD (modified PID with Integrator used as series) controllers based on Martin's growth model for optimum drug concentration to treat cancer. To the best of our knowledge, this is the first PID/I-PD based optimal chemotherapy control model used to investigate the cancer treatment. It has been observed that some solutions can reduce the cancer cells up to nearly 100% with much lower side effects and drug resistance during the whole period of treatment. The proposed strategy has been extended for more drugs and more design constraints and objectives.
219

Development of novel strategies for detection and treatment of cancer

Samarakoon, Thilani Nishanthika January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Stefan H. Bossmann / Cancer is one of the leading causes of death in the world. Billions of dollars are spent to treat cancer every year. This clearly shows the need for developing improved treatment techniques that are affordable to every person. Early diagnosis and imaging of tumors is equally important for the battle against this disease. This dissertation will discuss new approaches for discovering and developing novel detection and treatment techniques for cancer using organic ligands, and Fe/Fe3O4 core/shell magnetic nanoparticles. A series of o-phenylenediamine derivatives with nitro-, methyl- and chloro- substituents were synthesized and studied their ability to act as anticancer agents by using steady-state, UV/Vis-, and fluorescence spectroscopy. In the absence of zinc(II), intercalation with DNA is the most probable mode of interaction. Upon addition of zinc(II), DNA-surface binding of the supramolecular aggregates was observed. The interaction of the supramolecular (-ligand-Zn2+-)n aggregates with MDA 231 breast cancer cells led to significant cell death in the presence of UVA at λ=313 nm displaying their potential as anticancer agents. Bimagnetic Fe/Fe3O4 core/shell nanoparticles (MNPs) were designed for cancer targeting after intratumoral or intravenous administration. Their inorganic center was protected by dopamine-oligoethylene glycol ligands. TCPP (4-tetracarboxyphenyl porphyrin), a fluorescent dye, was attached to the dopamine-oligoethylene glycol ligands. These modified nanoparticles have the ability to selectively accumulate within the cancerous cells. They are suitable candidates for local hyperthermia treatment. We have observed a temperature increase of 11 ºC in live mice when subcutaneously injecting the MNPs at the cancer site and applying an alternating magnetic field The system is also suitable for Magnetic Resonance Imaging (MRI), which is a diagnostic tool to obtain images of the tumors. Our superparamagnetic iron oxide nanoparticles have the ability to function as T1 weighted imaging agents or positive contrasting agents. We were able to image tumors in mice using MRI. Various proteases are over-expressed by numerous cancer cell lines and, therefore, of diagnostic value. Our diagnostic nanoplatforms, designed for the measurement of protease activities in various body fluids (blood, saliva, and urine), comprise Fe/Fe3O4 core/shell nanoparticles featuring consensus sequences, which are specific for the target protease. Linked to the consensus sequence is a fluorescent organic dye (e.g. TCPP). Cleavage of the sequence by the target protease can be detected as a significant increase in fluorescence occurring from TCPP. We were able to correlate our diagnostic results with cancer prognosis.
220

Synthesis and evaluation of nitrogen-and phosphorus-donor platinum and gold complexes as anti-cancer agents

16 March 2010 (has links)
Ph.D. / Chapter 1 presents a brief overview on the development of platinum, ruthenium and gold anti-cancer complexes. The clinical success of cisplatin has been a tremendous impetus for the design of metal-based antitumor drugs. Its mechanism of action is therefore briefly discussed, as well as the toxic side effects of its clinical use and the cellular resistance to the drug. It is its side effects and drug resistance that have stimulated the development of cisplatin analogues and other metal based anti-cancer agents. Compounds showing most promise are ruthenium complexes which are structurally different but have the same stability and show similar modes of binding to DNA. The last part of the introduction deals with the development of gold(I) and gold(III) complexes, the main topics of the research described in this thesis. Chapter 2 reports on the attempted preparation of dppf and dippf gold(III) complexes. However, the reaction of these diphosphines with H[AuCl4] and Na[AuCl4] all led to isolation of gold(I) complexes (dppf)Au2X2 (X = Cl (1), Br (3)) and (dippf)Au2X2 (X = Cl (2), Br (4)). In an attempt to oxidize the gold(I) complexes, (dppf)Au2Br2 (3) and (dippf)Au2Br2 (4) were reacted with excess bromine yielding two new complexes (C5H4Br3)(PR2)AuBr (R = Ph, 5; R = i-Pr, 6). This bromination reaction could be extended to the ligands and bromination of the free diphosphinoferrocene ligands produced the expected brominated cyclopentenes (C5H4Br3)(PR2) (R = Ph, 7; R = i-Pr, 8) in good yields. However, these could not be complexed to gold due to reduced basicity of 7 and 8. When the bromination was performed under wet aerobic conditions the oxidized pseudo-centrosymmetric product, [doppf][FeBr4] (9) {doppf = 1,1’-bis(oxodiphenylphosphino)ferrocene, was obtained as the major product. Solid-state structures of 1, 2, 4, 6, and 9 were established by means of single-crystal X-ray crystallography. Chapter 3 reports on the use of chiral Josiphos and Walphos diphosphine ligands to form palladium, platinum and gold complexes. The platinum complexes were prepared by reacting the ligands with [PtCl2(cod)] while the palladium complexes were prepared from [PdCl2(NCMe)2]. The complexes obtained had the general formula [MCl2(P-P)], where M = Pd, Pt, and P-P = Josiphos or Walphos ligand, and were obtained in good yields. The X-ray structures of a palladium(II) and a platinum(II) complex of the same Josiphos ligand were determined. The Josiphos complexes 12 and 14 show good solubility in common solvents. Furthermore, the complexes remained soluble and stable in a 40:60 water:DMSO mixture. The Walphos complexes 13 and 15 rapidly precipitated under the same conditions. In line with this limited solubility 13 and 15 showed minimal cytotoxic effects when compared to their Josiphos counterparts 12 and 14 whose cytotoxic effects (in terms of IC50 values ) were six to seven times less than cisplatin. Reaction of the Walphos ligand and H[AuCl4] in a 1:1 ratio gave a dinuclear gold(I) complex 18 while the same reaction with Josiphos gave a mixture of intractable materials. However a 1:1 reaction of the Josiphos with AuCl(tht) gave a mononuclear three-coordinate gold(I) complex 16. A P^N chiral ligand comprising of a diphenylphosphine and a pyrazole moiety was also prepared and was complexed with AuCl(tht) to give a phosphine bound gold(I) complex 19. The structure of this complex was determined by X-ray studies. From the studies it became evident that apart from increasing the basicity of compound the pyrazolyl moiety remains dangling and the complex shows bond parameters similar to those observed with monophosphine ferrocenyl complexes. Chapter 4 reports on the bidentate and monodentate gold(III) complexes based on the (pyrazolylmethyl)pyridine ligands together with their platinum(II) complexes. The denticity of the complexes depended on the position of the pyrazolyl moiety relative to the pyridine nitrogen. When ortho-substituted ligands were reacted in a 1:1 ratio with H[AuCl4] in a mixture of water and ethanol at room temperature, bidentate cationic complexes of the general formula [AuCl2(PyCH2R2pz)][X], where R = Me (20), X = AuCl4-; R = Ph (21), X = Cl-; t-Bu (22), X= Cl- and p-tol (23), X = AuCl4-, were obtained. When para-substituted ligands were used under same reaction conditions, neutral monodentate complexes [AuCl3(PyCH2R2pz)], where R = Me (24) and R = Ph (25), were obtained. Platinum(II) complexes were obtained using K2[PtCl4] in a mixture of water and ethanol under reflux, and affords neutral complexes of the type [PtCl2(PyCH2R2pz)], where R = Me (27), Ph (28), t-Bu (29) and p-tol (30). When acetone was used instead of ethanol monoacetonylplatinum(II) complex (29a) was formed and on prolonged heating formation of the diacetonyl complex (28b) was observed. Both the platinum and the gold complexes were evaluated for their anti-cancer potency. The gold(III) complexes were devoid of any activity while the platinum complex 30 showed activity 8 times lower than cisplatin. The structures of 23, 25, 28, 29 and 29a were determined from single-crystal X-ray diffraction studies. In Chapter 5, tridentate complexes based on bis(pyrazolylethyl)amine are reported. These were prepared with the aim of improving water-solubility and cytotoxicity of the resulting complexes. New synthetic methods for preparation of the ligands NH(CH2CH2pz)2 (R = Me (L7), H (L8), t-Bu (L9)) under mild reaction conditions were developed albeit the yields obtained were generally low. The reaction of these ligands with H[AuCl4] gave corresponding tridentate dicationic gold(III) complexes [NH(CH2CH2pz)2][X]2 (R = Me (31), H (32), X = AuCl4 , and R = t-Bu (33), X = Cl-). Despite the ligands stabilizing the gold(III) ion, they showed no solubility in water. In an attempt to make the ligand system water soluble, a thiocarbamate analogue with pyrazolyl groups replaced by hydroxyl groups was prepared. However the resulting gold(III) complex [Au{CS2N(CH2CH2OH)2}2][AuCl2] (34) was found to be only soluble in DMSO.

Page generated in 0.0777 seconds