Spelling suggestions: "subject:"cancer 1genetic aspects."" "subject:"cancer cogenetic aspects.""
141 |
Secreted PDZ domain-containing protein 2 (sPDZD2): a potential autocrine tumor suppressorTam, Chun-wai., 談振偉. January 2007 (has links)
published_or_final_version / abstract / Physiology / Doctoral / Doctor of Philosophy
|
142 |
Hepatocyte growth factor-met signaling in ovarian cancer progressionZhou, Hongyan., 周紅艷. January 2007 (has links)
published_or_final_version / abstract / Zoology / Doctoral / Doctor of Philosophy
|
143 |
Epigenetic inactivation and tumor suppressive roles of hepatocyte growth factor activator inhibitors(HAIs) in human hepatocellularcarcinomaTung, Kwok-kwan., 董國焜. January 2007 (has links)
published_or_final_version / Pathology / Doctoral / Doctor of Philosophy
|
144 |
Growth inhibition effects of green tea and epigallocatechin gallate inbladder tumorsChen, Jie, Jack, 陳杰 January 2003 (has links)
published_or_final_version / Pharmacology / Doctoral / Doctor of Philosophy
|
145 |
The influence of flutamide, tamoxifen and dietary fat on hormone-induced mammary carcinogenesisLeung Wai, Ching-wa, Gina., 衛靜華. January 2002 (has links)
published_or_final_version / Anatomy / Doctoral / Doctor of Philosophy
|
146 |
Identification of a minimal overlapping amplified region (MAR) at 19q13.1-13.2 in four ovarian cancer cell lines鄧致文, Tang, Chi-man, Terence. January 2001 (has links)
published_or_final_version / Clinical Oncology / Master / Master of Philosophy
|
147 |
Study of minichromosome-maintenance-deficient 4 (MCM4) gene in breast cancerTing, Kam-po., 丁金寶. January 2009 (has links)
published_or_final_version / Pathology / Master / Master of Philosophy
|
148 |
THE EFFECTS OF RETINOIC ACID ON CELLULAR TRANSFORMATION AND TUMORIGENESIS INVOLVING CELLS WITH KNOWN ONCOGENES (VITAMIN A, RETINOIDS, RETROVIRUS).GIESE, NEILL ALAN. January 1984 (has links)
Vitamin A is known to have an important role in cellular differentiation and proliferation. In addition to regulating normal cellular processes vitamin A has also been shown to possess potent antineoplastic activity. The work in this dissertation characterizes the role of retinoic acid (RA) in cellular transformation and tumorigenesis with known oncogene involvement. These studies were initiated by examining the effects of RA on human carcinoma cell lines which express an activated c-ras gene. The bladder carcinoma, EJ/T24 (c-rasᴴ) and the two lung carcinoma cell lines, LXl (c-rasᴷ) and A2182 (c-rasᴷ), were not sensitive to RA. No inhibition of anchorage- or density-dependent growth was observed. Therefore, since these in vitro markers of transformation indicated a lack of effectiveness of RA on carcinomas containing a c-ras gene, retrovirally transformed cells were tested for RA sensitivity. Kirsten murine sarcoma, Balb/c murine sarcoma virus, and Simian sarcoma virus transformed NIH/3T3 and NRK cells were used in these studies. In contrast to the human carcinoma cell lines, anchorage-independent growth of some of the virally transformed cells was very sensitive to inhibition by RA. Anchorage-independent growth of KNRK and SSVNRK cells was sensitive to high concentrations (5 μM) of RA; whereas, Balb/cMSV3T3 and SSV3T3 were sensitive to 1-20 nM RA. BALB/cMSVNRK anchorage-independent growth was stimulated 3.5 fold by 1 μM RA. KNRK displayed a 60% reduction in anchorage-dependent growth at 10 μM RA while little inhibition was observed with the other retrovirally transformed cells. A high level of sensitivity to RA inhibition of anchorage-independent growth was correlated with the presence of cytoplasmic retinoic acid binding protein (CRABP). This indicated that CRABP may have some role in the inhibition of retrovirally induced cellular transformation. RA was shown to significantly reduce the incidence and size of Balb/cMSV3T3 cell tumors in nude mice. The inhibition of tumorigenesis in vivo therefore confirmed the results observed in vitro. To investigate the mechanism by which RA was acting to inhibit retroviral transformation, v-onc mRNA levels were examined. RA had no effect on v-onc mRNA levels in cell lines sensitive to the inhibition of transformation. The effect of RA on the relative rate of synthesis of p21, the transforming protein of KMSV and Balb/cMSV, was investigated. No effect of RA was observed in any of the cell lines. Also, GDP binding by p21 in KNRK cell was unchanged by RA treatment indicating that the functional activity of this transforming protein was not modified. RA does appear to be effective in inhibiting retrovirally induced cellular transformation and tumorigenesis. Evidence presented here indicates that this inhibition is not due to a direct effect of RA on the expression of the v-onc gene and/or gene product. Therefore, some other essential cooperating event(s) occurring within the cell are being acted upon by RA.
|
149 |
Insights into the mechanism of drug action of a novel silver(I) chemotherapeutic against a malignant melanoma cell line29 June 2015 (has links)
MSc. (Biochemistry) / GLOBOCAN 2008 Survey reported that 12.7 million cancer cases with 7.6 million cancer deaths occurred with an astonishing 56% of these cases and 64% of these deaths allocated to economically developing countries, such as South Africa. Statistics are alarming concerning cutaneous malignant melanomas (CMM) with the World Health Organisation (WHO) estimating that 132 000 new cases of CMM arise per annum internationally with CMM incidence rates showing an increase of 28% in men and 12% increase in women worldwide; whilst the Cancer Association of South Africa (CANSA) has reported that skin cancer is the most common cancer in South Africa, with an estimated 20 000 new cases being reported per annum. Normal cells progressively transform into malignant tumours by a process that requires sequential acquisition of mutations in a genome damaged by various intrinsic and exogenous incidences resulting in two distinct and functional outcomes: 1) activation and/or expression of unfavourable oncogenes and 2) inactivation of tumour suppressor genes that code for proteins involved in checkpoints to cell proliferation or cell death. Transformation of dendritic melanocytic epidermal skin cells give rise to different types of skin cancers with CMM being predominant with poor prognosis and 90% of all deaths associated with cutaneous type tumours and CMM has been classified as a multifactorial disease where both environmental and genetic factors/mutations interact in concert to contribute to CMM susceptibility. Conceptual progress in the last decade has added two emerging hallmarks showing increased potential in generality to the already six known hallmarks of cancer, namely reprogramming of cellular energy metabolism and evasion of immune destruction by T and B lymphocytes and macrophages, enabled by core hallmark cancer characteristics such as genome instability and tumour-promoting inflammation. The Warburg Effect has been described, in terms of metabolic particularities of cancers, as an increased glucose uptake, via a shift in energy production from oxidative phosphorylation to a glycolytic pathway, with increased extracellular lactate release by tumours resulting in a consequent decrease in pH in the surrounding tissues, even in the presence of oxygen. This effect contributes to proliferation, invasiveness, metastasis and angiogenesis of malignant cells. Thus, chronic and uncontrolled cell proliferation, representing the essence of tumour growth, involves not only deregulatory control of cell proliferation but also a parallel adjustment to energy metabolic pathways in order to fuel cell growth and division. Over the last twenty years, studies have shown that the concept of programmed cell death (PCD), by apoptosis, serves as a natural barrier to cancer development where both the intrinsic and extrinsic apoptotic circuits conclude in the implementation of progressively...
|
150 |
非編碼 RNA 在卵巢癌差異性表達的薈萃分析 / Meta-analysis of differential expression of non-coding RNAs in ovarian cancer魏瑋 January 2018 (has links)
University of Macau / Institute of Chinese Medical Sciences
|
Page generated in 0.0697 seconds