• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 163
  • 17
  • 4
  • Tagged with
  • 380
  • 380
  • 114
  • 65
  • 46
  • 44
  • 36
  • 33
  • 29
  • 29
  • 28
  • 24
  • 23
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

ANALYSIS OF THE ROLE OF TWO AUTOPHAGY PATHWAY RELATED GENES, BECN1 AND TSC1, IN MURINE MAMMARY GLAND DEVELOPMENT AND DIFFERENTIATION

Hale, Amber N 01 January 2014 (has links)
The mammary gland is a dynamic organ that undergoes the majority of its development in the postnatal period in four stages; mature virgin, pregnancy, lactation, and involution. Every stage relies on tightly regulated cellular proliferation, programmed cell death, and tissue remodeling mechanisms. Misregulation of autophagy, an intracellular catabolic process to maintain energy stores, has long been associated with mammary tumorigenesis and other pathologies. We hypothesize that appropriate regulation and execution of autophagy are necessary for proper development of the mammary ductal tree and maintenance of the secretory epithelia during late pregnancy and lactation. To test this hypothesis we examined the role of two genes during development of the mammary gland. Beclin1 (Becn1) is an essential autophagy gene. Since the Becn1 knockout model is embryonic lethal, we have generated a Becn1 conditional knockout (cKO). We used two discrete mammary gland-specific Cre transgenic lines to interrogate the role of BECN1 during development. We report that MMTV-CreD; Becn1fl/fl mice have a hyper-branching phenotype and WAP-Cre; Becn1fl/- mice are unable to sustain a lactation phase. Becn1 mutants exhibit abnormal glandular morphology during pregnancy and after parturition. Moreover, when autophagy is chemically inhibited in vitro, mammary epithelial cells have an increased mean number of lipid droplets per cell. MTOR inhibits autophagy upstream of BECN1; we looked higher in the regulatory pathway for regulatory candidates. It has been well characterized that Tuberous sclerosis complex 1 (TSC1), in a heterodimer with its primary binding partner TSC2, inhibits MTOR signaling via inhibition of RHEB. Using the Tsc1 floxed model we generated a mammary gland specific Tsc1 cKO and found that these mice phenocopy the Becn1 cKO mice, including a gross lactation failure. Tsc1 cKO glands have altered morphology, retained lipid droplets in secretory epithelia, and an overall increase in MTOR signaling. We show that TSC1 and BECN1 are interacting partners, and that the interaction is nutrient responsive. These results suggest that Becn1 and Tsc1 are necessary for proper mammary gland development and differentiation. Furthermore, we have demonstrated a novel murine protein-protein interaction and an important link between regulation of MTOR pathway and regulation of autophagy in a developmental context.
282

Suppression of Chronically Induced Breast Carcinogenesis and Role of Mesenchymal Stem-like Cells

Rathore, Kusum 01 December 2011 (has links)
Sporadic breast cancers are mainly attributable to long-term exposure to environmental factors, via a multi-year, multi-step, and multi-path process of tumorigenesis involving cumulative genetic and epigenetic alterations in the chronic carcinogenesis of breast cells from a non-cancerous stage to precancerous and cancerous stages. Epidemiologic and experimental studies have suggested that various dietary compounds like green tea and grape seed may be used as preventive agents for breast cancer control. In this research, I have developed a cellular model that mimics breast cell carcinogenesis chronically induced by cumulative exposures to low doses of environmental carcinogens. I used the chronic carcinogenesis model as a target system to investigate the activity of dietary compounds at non-cytotoxic levels in intervention of cellular carcinogenesis induced by cumulative exposures to pico-molar 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P). I used various cancer-associated properties like, reduced dependence on growth factors, anchorage-independent growth, increased cell mobility, and acinar-conformational disruption as measurable endpoints of carcinogenesis. The first part (Part-I) of this dissertation focuses on the understanding the breast cancer progression, importance of environmental carcinogens, role of diet in cancer prevention and importance of epithelial to mesenchymal transition and stem-like cells in chronic carcinogenesis. The next three parts (Part II-IV) focus on understanding the role and mechanisms of dietary compounds in prevention of carcinogenesis and stem-like cell properties. Results in part II revealed the green tea extract at bio-achievable concentration can suppress carcinogen-induced cancerous properties. In Part-III, I compared the four major catechins in green tea extract in suppressing chronic carcinogenesis and the results revealed that epicatechin gallate to be most effective. I also identified that short-term exposure to NNK and B[a]P resulted in elevation of reactive oxygen species, ERK pathway activation and induction of cell proliferation and DNA damage, which can be blocked by green tea catechins. Results in Part-IV describe the roles of properties and markers associated with stem-like cells and the epithelial to mesenchymal transition induced by chronic carcinogenesis and their suppression by green tea catechins and grape seed proanthocyanidin extract. The last section (Part-V) summarizes the findings with their importance and discusses future directions.
283

Regulation of the PI3-Kinase/PTEN Signaling Pathway by TGF-β in Prostate Cancer Cells

Kimbrough-Allah, Mawiyah 21 May 2018 (has links)
Transforming growth factor -β (TGF-β) plays an important role in the progression of prostate cancer. It acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. The PI3-kinase pathway has been shown to play integral roles in many cellular processes including cell proliferation, survival, and cell migration in many cell types. PI3-kinase pathway mediates TGF-β effects on prostate cancer cell migration and invasion. Phosphatase and tensin homolog (PTEN), a tumor suppressor gene, inhibits PI3-kinase pathway and is frequently mutated in prostate cancers. In this present study, we investigated possible roles of PTEN in TGF-β effects on proliferation, migration, and the activation of PI3-kinase/AKT pathway in prostate cancer cells. PTEN was expressed in DU145 cells; however PC3 cells lack PTEN expression. TGF-β1 and TGF-β3 had no effect on PTEN mRNA levels but both isoforms increased PTEN protein levels in DU145 and RWPE1 cells, suggesting that TGF-β may mediate regulation of PTEN protein stability. TGF-β1 and TGF-β3 increased PTEN protein levels even in the presence of cycloheximide, a protein synthesis inhibitor, in DU145 cells. In addition, TGF-β upregulated phosphorylation of PTEN, stabilizing PTEN protein. Increase of PTEN protein levels in these cells may also indicate that PTEN may mediate TGF-β effects on cell proliferation. Knockdown of PTEN in DU145 cells resulted in significant increase in cell proliferation which was no longer affected by TGF-β isoforms. PTEN overexpression in PC3 cells inhibited cell proliferation. Knockdown of endogenous PTEN enhanced cell migration in DU145 cells, whereas PTEN overexpression reduced migration in PC3 cells and reduced phosphorylation of AKT in response to TGF-β. Based on these results, we conclude that PTEN plays a role in inhibitory effects of TGF-β on cell proliferation whereas its absence may enhance TGF-β effects on activation of PI3-kinase pathway and cell migration.
284

Targeting T-bet for Prevention of Graft-Versus-Host Disease and Leukemia Relapse after Allogeneic Hematopoietic Stem Cell Transplantation

Fu, Jianing 01 January 2015 (has links)
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective therapeutic option for many malignant diseases. However, the efficacy of allo-HSCT is limited by the occurrence of destructive graft-versus-host disease (GVHD). Since allogeneic T cells are the driving force in the development of GVHD, their activation, proliferation, and differentiation are key factors to understanding GVHD pathogenesis. On the other hand, antigen-presenting cells (APCs) are essential for allogeneic T-cell priming and the development of GVHD. The T-box transcription factor T-bet is a master regulator for IFN-γ production and Th1 differentiation. T-bet also regulates the functions of APCs including dendritic cells (DCs) and B cells. Therefore, we investigated the role of T-bet in T cell responses, as well as on APC functions, in acute GVHD (aGVHD) using murine models of allogenic bone marrow transplantation (allo-BMT). In Chapter 2, we evaluated the roles of T-bet and IFN-γ in T-cell responses. T-bet-/- T cells induced significantly less GVHD compared with either wild-type (WT) or IFN-γ-/- counterparts in CD4-driven major histocompatibility complex (MHC)- or minor histocompatibility antigen (miHA)-mismatched models. We defined several T-bet-dependent but IFN-γ-independent molecules that may account for this distinct outcome. Further study indicates that T-bet also controls the optimal activity of Th17 cells to induce GVHD. Moreover, the compromised graft-versus-leukemia (GVL) effect of T-bet-/- T cells could be essentially reversed by IL-17 neutralization. Thus, targeting T-bet or regulating its downstream effectors independent of IFN-γ may be a promising strategy to control GVHD in the clinic. In Chapter 3, we evaluated the role of T-bet on APCs and found that T-bet-/- recipients developed much milder GVHD than their WT counterparts in MHC-mismatched or CD4-depedent miHA-mismatched models. As the functional readout of APCs, allogeneic donor T cells, particular CD4 subpopulation, significantly reduced IFN-γ production, proliferation and migration, and caused less damage in liver and gut in T-bet-/- recipients. We further observed that T-bet on recipient hematopoietic APCs, particular DCs, was primarily responsible for donor T-cell response and pathogenicity in GVHD. In fact, Trail/DR5 interaction served as a major signaling pathway responsible for donor T-cell apoptosis and impaired GVHD development in T-bet-/- recipients. Furthermore, T-bet expression on the host is largely dispensable for the GVL effect. Taken together, we propose that T-bet is a potential therapeutic target for the control of GVHD through regulating T cells as well as APCs. We believe further exploration and understanding of the immunobiology of T-bet in controlling the activities of T cells and APCs in GVHD will expand therapeutic options for the continuing success of allo-HSCT.
285

Intracellular Signaling and Trafficking in Cancer: Role of Rab5-GTPase in Migration and Invasion of Breast Cells

Porther, Nicole 20 March 2015 (has links)
Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. Steroid hormones, such as estrogen, and growth factors, which include insulin growth factor I/II (IGF-1/IGF-2) therapy has been associated with most if not all of the features of metastasis. It has been determined that IGF-1 increases cell survival of cancer cells and potentiate the effect of E2 and other ligand growth factors on breast cancer cells. However not much information is available that comprehensively expounds on the roles of insulin growth factor receptor (IGFR) and Rab GTPases may play in breast cancer. The latter, Rab GTPases, are small signaling molecules and critical in the regulation of many cellular processes including cell migration, growth via the endocytic pathway. This research involves the role of Rab GTPases, specifically Rab5 and its guanine exchange factors (GEFs), in the promotion of cancer cell migration and invasion. Two important questions abound: Are IGFR stimulation and downstream effect involved the endocytic pathway in carcinogenesis? What role does Rab5 play in cell migration and invasion of cancer cells? The hypothesis is that growth factor signaling is dependent on Rab5 activity in mediating the aggressiveness of cancer cells. The goal is to demonstrate that IGF-1 signaling is dependent on Rab5 function in breast cancer progression. Here, the results thus far, have shown that while activation of Rab5 may mediate increased cell proliferation, migration and invasion in breast cancer cells, the Rab5 GEF, RIN1 interacts with the IGFR thereby facilitating migration and invasion activities in breast cells. Furthermore, endocytosis of the IGFR in breast cancer cells seems to be caveolin dependent as the data has shown. This taken together, the data shows that IGF-1 signaling in breast cancer cells relies on IGF-1R phosphorylation, caveolae internalization and sequestration to the early endosome RIN1 function and Rab5 activation.
286

UV-Induced Melanoma Mouse Model Dependent on Endothelin 3 Over-Expression

Benaduce, Ana Paula 20 October 2014 (has links)
Melanoma is one of the most aggressive types of cancer. It originates from the transformation of melanocytes present in the epidermal/dermal junction of the human skin. It is commonly accepted that melanomagenesis is influenced by the interaction of environmental factors, genetic factors, as well as tumor-host interactions. DNA photoproducts induced by UV radiation are, in normal cells, repaired by the nucleotide excision repair (NER) pathway. The prominent role of NER in cancer resistance is well exemplified by patients with Xeroderma Pigmentosum (XP). This disease results from mutations in the components of the NER pathway, such as XPA and XPC proteins. In humans, NER pathway disruption leads to the development of skin cancers, including melanoma. Similar to humans afflicted with XP, Xpa and Xpc deficient mice show high sensibility to UV light, leading to skin cancer development, except melanoma. The Endothelin 3 (Edn3) signaling pathway is essential for proliferation, survival and migration of melanocyte precursor cells. Excessive production of Edn3 leads to the accumulation of large numbers of melanocytes in the mouse skin, where they are not normally found. In humans, Edn3 signaling pathway has also been implicated in melanoma progression and its metastatic potential. The goal of this study was the development of the first UV-induced melanoma mouse model dependent on the over-expression of Edn3 in the skin. The UV-induced melanoma mouse model reported here is distinguishable from all previous published models by two features: melanocytes are not transformed a priori and melanomagenesis arises only upon neonatal UV exposure. In this model, melanomagenesis depends on the presence of Edn3 in the skin. Disruption of the NER pathway due to the lack of Xpa or Xpc proteins was not essential for melanomagenesis; however, it enhanced melanoma penetrance and decreased melanoma latency after one single neonatal erythemal UV dose. Exposure to a second dose of UV at six weeks of age did not change time of appearance or penetrance of melanomas in this mouse model. Thus, a combination of neonatal UV exposure with excessive Edn3 in the tumor microenvironment is sufficient for melanomagenesis in mice; furthermore, NER deficiency exacerbates this process.
287

The effects of R-flurbiprofen in reducing tumors in a multiple intestinal neoplasia mouse model

Quiggle, David Douglas 01 January 2001 (has links)
The design of the proposed study was to administer R-FB to 72-day old Min/+ mice for up to 42 days. In order to capture the process of tumor reduction, animals were necropsied at various time points. At each time point animals were evaluated for tumor loads and presence of apoptotic cells along the small intestine. Studies have shown that when R-flurbiprofen (R-FB) is administered in the Min/+ mouse model it can cause the prevention and regression on intestinal tumors.
288

Exploring the Role of Selenocysteine Biosynthesis Enzyme SEPHS2 in Cancer

Carlisle, Anne E. 06 November 2020 (has links)
Selenium is a micronutrient that is used by the selenocysteine biosynthesis pathway to produce the amino acid selenocysteine, which is required in selenoproteins. Many of the 25 human selenoproteins, such as glutathione peroxidases and thioredoxin reductases, play important roles in maintaining cellular redox homeostasis. In this study we characterize how this metabolic pathway is upregulated in cancer cells and how this increase in activity creates a unique vulnerability. We have outlined the evidence and underlying mechanisms for how many metabolites normally produced in cells are highly toxic, and we describe this concept as illustrated in selenocysteine metabolism. My thesis explores how SEPHS2, an enzyme in the selenocysteine biosynthesis pathway, is essential for survival of cancer, but not normal cells. SEPHS2 is required in cancer cells to detoxify selenide, an intermediate that is formed during selenocysteine biosynthesis. Breast and other cancer cells are selenophilic, owing to a secondary function of the cystine/glutamate antiporter SLC7A11 that promotes selenium uptake and selenocysteine biosynthesis, which, by allowing production of selenoproteins such as GPX4, protects cells against ferroptosis. However, this activity also becomes a liability for cancer cells because selenide is poisonous and must be processed by SEPHS2. These results show that SEPHS2 is a cancer specific target and indicates the therapeutic potential of SEPHS2 inhibition in the treatment of cancer. Collectively, this thesis identifies SEPHS2 as a targetable vulnerability of cancer cells, defines the role of selenium metabolism in cancer, and outlines a roadmap for future studies regarding toxic metabolites and cancer.
289

Identification of ESRRB and SOX2 as novel mediators of the glucocorticoid response in acute lymphoblastic leukemia

Gallagher, Kayleigh M. 03 August 2020 (has links)
Resistance to glucocorticoid (GC) therapy results in poor prognosis for acute lymphoblastic leukemia (ALL) patients. Utilizing a whole genome shRNA screen our lab identified several novel mechanisms of GC resistance. My thesis work established that an orphan nuclear receptor, the Estrogen Related Receptor Beta (ESRRB), is critical for induction of apoptotic genes following treatment with the GC dexamethasone. ESRRB has mostly been implicated in maintenance of pluripotency in mouse embryonic stem cells. We find that repression of ESRRB results in GC resistance in ALL and define ESRRB as a novel cooperating transcription factor in GC-induced gene expression. We also show that agonists to ESRRB synergize with dexamethasone and increase dexamethasone induced apoptosis in relapse ALL patient samples. Interestingly, our shRNA screen identified another factor important in stem cell maintenance: SOX2. While we originally hypothesized that ESRRB and SOX2 may cooperate in ALL, RNA-sequencing studies revealed that these factors mediate GC resistance by independent mechanisms. Our data define SOX2 as a repressor of key signaling pathways in ALL. Upon SOX2 knockdown, we observe activation of pro-survival gene expression including activation of the MAPK pathway, which has previously been implicated in GC resistance. MAPK activation may be explained by an increase in EGFR expression observed in Sox2 knockdown cells and GC resistant patients, suggesting EGFR inhibitors may re-sensitize patients to GCs. Overall my thesis work identifies mechanisms of GC resistance in ALL and utilizes these findings to define novel therapeutic strategies for GC resistant ALL patients.
290

Exploring the impact of the tumor microenvironment on nuclear morphometry: lessons learned for sensitivity to cytotoxic treatment

Apekshya Chhetri (10731045) 05 May 2021 (has links)
<p>Breast cancer remains the leading cause of death among females worldwide. While systemic therapy for breast cancer may work effectively in the early phases, for more than 10% of primary and 50% of metastatic cases, the disease eventually progresses, resisting treatments. To overcome this issue, recognizing markers of resistance as early as possible is critical. However, the underlying mechanisms of resistance remains elusive. The influence of microenvironmental factors of the extracellular matrix (ECM) on tumor behavior has been revealed relatively recently and increased stiffness of ECM is associated with cancer progression. Additionally, impacts of other matrix components such as non-neoplastic epithelial cells (that may constitute an important portion of the tumor microenvironment -TME) are suspected to influence tumors but they have not been investigated in detail. Besides, it is not known whether the response to increasing stiffness depends on the subtypes of breast cancer. Here, using breast models in 3D cell culture we have shown that the non-neoplastic epithelial compartment can influence the effect of matrix stiffness even for tumors recognized as highly aggressive. The degree of tumor aggressiveness recognizable via tumor architecture is associated with a differential behavior when ECM stiffness changes. In a 3D microenvironmental context, which provides an optimal level of constraints for tumors to display their phenotype, we report stiffness and paracrine influence impact on cisplatin-mediated cytotoxicity, which correlates with distinct nuclear morphometry and distribution pattern associated with population heterogeneity. The response pattern varies across cell lines representing higher and lower levels of aggressiveness in the basal-like subtypes of breast cancer. Our results also highlight the need for integrating biochemical and physical components of the TME in future designs of <i>in vitro</i> drug screening platforms.</p>

Page generated in 0.0604 seconds