• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role onkogenu erbB-2 v biologii rakovinných kmenových buněk / The role of erbB-2 oncogene in the biology of cancer stem-like cells

Prokopová, Kateřina January 2010 (has links)
Recent studies indicate the existence of a subpopulation of cells within tumours with stem cell-like characteristics. These "cancer stem-like cells" (CSCs) are relatively resistant to established therapies, usually targeting differentiated and fast proliferating cells. Therefore, CSCs may be a reason for the relapse of neoplastic diseases. CSCs can be characterised by a specific gene expression profile and deregulated signalling pathways. Of these, upregulation of the erbB-2 (HER2) receptor, a hallmark of ~25-30% breast cancer patients, is related to dismal prognosis, elevated proliferation potential and resistance to chemotherapy. Recent evidence has suggested that upregulation of erbB-2 leads to increase in the pool of CSCs. In our study we used mammospheres, cells grown in the absence of serum, an in vitro model of breast CSCs, which were prepared by "weaning" breast cancer MCF7 cells to a special medium. These cells were CD44high and showed increased expression of ABCG-2, Sox-2, Vimentin as well as high levels of erbB-2. Next, we prepared a stable line of MCF7 cells with low levels of erbB-2 by shRNA. ErbB-2low cells were characterised for expression of set of CSCs markers and tested for tumour forming efficacy in nude mice using ultrasound imaging. Keywords Cancer stem-like cells, erbB-2,...
2

The Role of Eukaryotic Translation Initiation Factor 4A1 in Breast Cancer Chemoresistance

Sridharan, Sangita January 2020 (has links)
No description available.
3

Reprolifilage d'une petite molécule chimique à activité thérapeutique et cellules souches cancéreuses : étude et compréhension du mécanisme d'action du bisacodyl sur les cellules souches cancéreuses isolées de glioblastome / Study of the mechanism of action of bisacodyl in cancer stem-like cells isolated from glioblatoma

Chen, Wanyin 24 May 2017 (has links)
Les glioblastomes (GBM) sont les formes les plus agressives de tumeurs gliales avec une survie médiane des patients traités n’excédant pas 2 ans. Ce mauvais pronostic est dû, entre autres, à l’hétérogénéité de ces tumeurs avec la présence de cellules souches cancéreuses (CSCs) en prolifération ou quiescentes, particulièrement résistantes aux traitements conventionnels. Cibler ces cellules au sein du microenvironment tumoral hypoxique et acides fait donc partie des thérapies d’avenir des GBMs. Le laxatif bisacodyl a été identifié par criblage de la chimiothèque Prestwick comme un composé induisant la mort par nécrose des CSCs de glioblastome (GSCs en prolifération et en quiescence), uniquement dans des conditions de faible acidité retrouvées également au sein des tumeurs. Une activité antitumorale in vivo a également été démontrée pour ce composé. Cette thèse présente l’identification du mode d’action du bisacodyl dans les GSCs. Celui-ci implique la serine/thréonine kinase WNK1 et ses partenaires, les kinases Akt et SGK1 et des co-transporteurs Na+/HCO3- NBC. Nos résultats ont également révélé un rôle de WNK1 dans la physiopathologie des GSCs. / Glioblastoma (GBM), the most aggressive glial tumor, is currently incurable with a very short-term patient survival (< 2 years). The heterogeneity of GBM and the presence of highly resistant proliferating and quiescent cancer stem-like cells (CSCs), is largely responsible for poor prognosis in this disease. Thus, new approaches targeting glioblastoma CSCs (GSCs), within the acidic/hypoxic tumor microenvironment, are promising strategies for treating GBM. The laxative bisacodyl was identified in a high throughput screening of the Prestwick chemical library as a compound inducing necrotic cell death in proliferating and quiescent GSCs only in acidic microenvironments similar to those found in tumors. Bisacodyl was further shown to induce tumor shrinking and to increase survival in in vivo GBM models. In this thesis work, we identify bisacodyl’s mechanism of action in GSCs. This mechanism involves the serine/threonine kinase WNK1 and its signaling partners including protein kinases Akt and SGK1 and NBC Na+/HCO3- cotransporters. Our data also highlight a previously unknown role of WNK1 in GSC physiopathology.
4

Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome / The implication of cancer stem-like cell derived extracellular vesicle in glioblastoma vascular permeability increase

Treps, Lucas 02 September 2015 (has links)
Les capillaires cérébraux sont caractérisés par une structure et une organisation particulière au sein de l’unité neurovasculaire. Au travers de jonctions endothéliales particulièrement sélectives, la barrière hémato-encéphalique (BHE) orchestre les échanges de cellules, fluides, protéines et métabolites plasmatiques entre le sang et le compartiment cérébral. La VE-cadhérine, protéine transmembranaire des jonctions endothéliales, est particulièrement importante dans l’intégrité vasculaire puisque sa déstabilisation entraine un affaiblissement de la BHE et conduit à sa rupture dans certaines pathologies. Le glioblastome est une tumeur cérébrale extrêmement agressive et associée à un haut degré de vascularisation dont la perméabilité est anormalement élevée. Ceci contribue à la formation d’œdèmes vasculaires péri-tumoraux préjudiciables pour la santé du patient. Depuis la dernière décennie, un grand nombre d’études ont relié la présence d’une sous-population de cellules souches gliomateuses (CSG) à l’initiation, la récurrence et l’agressivité du glioblastome. De façon importante, ces CSG sont localisées dans un microenvironnement particulier, appelé niche vasculaire, dans lequel elles communiquent étroitement et échangent de manière bidirectionnelle avec l’endothélium cérébral. Sur la base d’un modèle de coculture entre CSG issues de patients, et cellules endothéliales cérébrales récapitulant les propriétés de la BHE, notre laboratoire a porté son attention sur la Sémaphorine 3A (Séma3A). Cette protéine est en effet sécrétée par les CSG et exerce, via son corécepteur Neuropiline-1 (Nrp-1), une action positive sur la perméabilité vasculaire par déstabilisation de la VE-cadhérine. Durant mes travaux de thèse, nous avons identifié et caractérisé la présence de la Séma3A à la membrane de vésicules extracellulaires (EV) produites par les CSG. Un nombre grandissant d’études met en exergue l’implication de ces vésicules dans la biologie tumorale. Dans ce sens, nous avons démontré que les EV des CSG peuvent pénétrer dans les cellules endothéliales, et moduler leurs propriétés intrinsèques. Au travers de modèles in vivo originaux et de la combinaison de stratégies génétiques (ARN interférent) et pharmacologiques (anticorps bloquant humanisés), nous avons d’une part montré que la Séma3A, portée par les EV, agit spécifiquement via la Nrp-1 exprimée par les cellules endothéliales afin d’augmenter leur perméabilité. D’autre part, dans un modèle de xénogreffe orthotopique de CSG, nous avons identifié une augmentation significative du taux de Séma3A dans la fraction de EV circulantes. De manière intéressante, des résultats similaires ont été obtenus à partir de prélèvements de patients glioblastome nouvellement diagnostiqués. La Séma3A de ces vésicules, apte à augmenter la perméabilité vasculaire à distance, in vitro et in vivo au travers de la Nrp-1, représenterait donc un bon candidat en tant que futur marqueur théranostique du glioblastome. / Brain microvessels are characterized by specific structure and organization within the neurovascular unit. Through highly selective endothelial junctions, the blood-brain barrier (BBB) controls exchanges of cells, fluids, plasmatic proteins and metabolites between blood and the cerebral compartment. VE-cadherin, a transmembrane protein of endothelial junctions, is of most importance in the vascular integrity. Indeed, its destabilization leads to BBB weakening and also breaking in some pathology. Glioblastoma is a highly aggressive brain tumour characterized by a high vascularization rate and abnormal vascular permeability. These properties promote in turn perivascular œdema, harmful for the patient. Since the last decade, a growing number of studies link glioblastoma stem-like cell (GSC) population to the initiation, recurrence and aggressiveness of such cancer. Interestingly, GSCs are located within the vascular niche, a specific microenvironment where they survive, communicate and exchange factors with the microvascular endothelium. On the base of a coculture model between patient-derived GSCs and brain microvascular endothelial cells which recapitulate BBB properties, our laboratory has focused on Semaphorin 3A (Sema3A). Sema3A is a GSC secreted protein and acts through its coreceptor Neuropilin-1 (Nrp-1) which in turn destabilizes VE-cadherin and promotes vascular permeability. During my thesis, we have identified and characterized Sema3A at the membrane of GSC secreted extracellular vesicles (EVs). A growing number of studies highlight EVs as important actors of tumour biology, in this way we have demonstrated that GSC-derived EVs can be uptake by endothelial cells and modulate their intrinsic properties. Through original in vivo models in combination with genetic (RNA interference) and pharmacologic strategies (humanised blocking antibodies), we have demonstrated that EV-carried Sema3A acts specifically through endothelial cells Nrp-1 to promote permeability. Furthermore, in orthotopic GSC xenograft we have identified a significant increase in the Sema3A EV-fraction collected from peripheral blood. Interestingly, similar results were obtained from newly diagnosed glioblastoma blood samples. Moreover, Sema3A from this fraction is a potent propermeability factor that can act at distance through Nrp-1 both in vitro and in vivo. Altogether, our results suggest that EV-carried Sema3A orchestrates loss of barrier integrity in glioblastoma and may be of interest for prognostic purposes.
5

Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome / The implication of cancer stem-like cell derived extracellular vesicle in glioblastoma vascular permeability increase

Treps, Lucas 02 September 2015 (has links)
Les capillaires cérébraux sont caractérisés par une structure et une organisation particulière au sein de l’unité neurovasculaire. Au travers de jonctions endothéliales particulièrement sélectives, la barrière hémato-encéphalique (BHE) orchestre les échanges de cellules, fluides, protéines et métabolites plasmatiques entre le sang et le compartiment cérébral. La VE-cadhérine, protéine transmembranaire des jonctions endothéliales, est particulièrement importante dans l’intégrité vasculaire puisque sa déstabilisation entraine un affaiblissement de la BHE et conduit à sa rupture dans certaines pathologies. Le glioblastome est une tumeur cérébrale extrêmement agressive et associée à un haut degré de vascularisation dont la perméabilité est anormalement élevée. Ceci contribue à la formation d’œdèmes vasculaires péri-tumoraux préjudiciables pour la santé du patient. Depuis la dernière décennie, un grand nombre d’études ont relié la présence d’une sous-population de cellules souches gliomateuses (CSG) à l’initiation, la récurrence et l’agressivité du glioblastome. De façon importante, ces CSG sont localisées dans un microenvironnement particulier, appelé niche vasculaire, dans lequel elles communiquent étroitement et échangent de manière bidirectionnelle avec l’endothélium cérébral. Sur la base d’un modèle de coculture entre CSG issues de patients, et cellules endothéliales cérébrales récapitulant les propriétés de la BHE, notre laboratoire a porté son attention sur la Sémaphorine 3A (Séma3A). Cette protéine est en effet sécrétée par les CSG et exerce, via son corécepteur Neuropiline-1 (Nrp-1), une action positive sur la perméabilité vasculaire par déstabilisation de la VE-cadhérine. Durant mes travaux de thèse, nous avons identifié et caractérisé la présence de la Séma3A à la membrane de vésicules extracellulaires (EV) produites par les CSG. Un nombre grandissant d’études met en exergue l’implication de ces vésicules dans la biologie tumorale. Dans ce sens, nous avons démontré que les EV des CSG peuvent pénétrer dans les cellules endothéliales, et moduler leurs propriétés intrinsèques. Au travers de modèles in vivo originaux et de la combinaison de stratégies génétiques (ARN interférent) et pharmacologiques (anticorps bloquant humanisés), nous avons d’une part montré que la Séma3A, portée par les EV, agit spécifiquement via la Nrp-1 exprimée par les cellules endothéliales afin d’augmenter leur perméabilité. D’autre part, dans un modèle de xénogreffe orthotopique de CSG, nous avons identifié une augmentation significative du taux de Séma3A dans la fraction de EV circulantes. De manière intéressante, des résultats similaires ont été obtenus à partir de prélèvements de patients glioblastome nouvellement diagnostiqués. La Séma3A de ces vésicules, apte à augmenter la perméabilité vasculaire à distance, in vitro et in vivo au travers de la Nrp-1, représenterait donc un bon candidat en tant que futur marqueur théranostique du glioblastome. / Brain microvessels are characterized by specific structure and organization within the neurovascular unit. Through highly selective endothelial junctions, the blood-brain barrier (BBB) controls exchanges of cells, fluids, plasmatic proteins and metabolites between blood and the cerebral compartment. VE-cadherin, a transmembrane protein of endothelial junctions, is of most importance in the vascular integrity. Indeed, its destabilization leads to BBB weakening and also breaking in some pathology. Glioblastoma is a highly aggressive brain tumour characterized by a high vascularization rate and abnormal vascular permeability. These properties promote in turn perivascular œdema, harmful for the patient. Since the last decade, a growing number of studies link glioblastoma stem-like cell (GSC) population to the initiation, recurrence and aggressiveness of such cancer. Interestingly, GSCs are located within the vascular niche, a specific microenvironment where they survive, communicate and exchange factors with the microvascular endothelium. On the base of a coculture model between patient-derived GSCs and brain microvascular endothelial cells which recapitulate BBB properties, our laboratory has focused on Semaphorin 3A (Sema3A). Sema3A is a GSC secreted protein and acts through its coreceptor Neuropilin-1 (Nrp-1) which in turn destabilizes VE-cadherin and promotes vascular permeability. During my thesis, we have identified and characterized Sema3A at the membrane of GSC secreted extracellular vesicles (EVs). A growing number of studies highlight EVs as important actors of tumour biology, in this way we have demonstrated that GSC-derived EVs can be uptake by endothelial cells and modulate their intrinsic properties. Through original in vivo models in combination with genetic (RNA interference) and pharmacologic strategies (humanised blocking antibodies), we have demonstrated that EV-carried Sema3A acts specifically through endothelial cells Nrp-1 to promote permeability. Furthermore, in orthotopic GSC xenograft we have identified a significant increase in the Sema3A EV-fraction collected from peripheral blood. Interestingly, similar results were obtained from newly diagnosed glioblastoma blood samples. Moreover, Sema3A from this fraction is a potent propermeability factor that can act at distance through Nrp-1 both in vitro and in vivo. Altogether, our results suggest that EV-carried Sema3A orchestrates loss of barrier integrity in glioblastoma and may be of interest for prognostic purposes.
6

Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome / The implication of cancer stem-like cell derived extracellular vesicle in glioblastoma vascular permeability increase

Treps, Lucas 02 September 2015 (has links)
Les capillaires cérébraux sont caractérisés par une structure et une organisation particulière au sein de l’unité neurovasculaire. Au travers de jonctions endothéliales particulièrement sélectives, la barrière hémato-encéphalique (BHE) orchestre les échanges de cellules, fluides, protéines et métabolites plasmatiques entre le sang et le compartiment cérébral. La VE-cadhérine, protéine transmembranaire des jonctions endothéliales, est particulièrement importante dans l’intégrité vasculaire puisque sa déstabilisation entraine un affaiblissement de la BHE et conduit à sa rupture dans certaines pathologies. Le glioblastome est une tumeur cérébrale extrêmement agressive et associée à un haut degré de vascularisation dont la perméabilité est anormalement élevée. Ceci contribue à la formation d’œdèmes vasculaires péri-tumoraux préjudiciables pour la santé du patient. Depuis la dernière décennie, un grand nombre d’études ont relié la présence d’une sous-population de cellules souches gliomateuses (CSG) à l’initiation, la récurrence et l’agressivité du glioblastome. De façon importante, ces CSG sont localisées dans un microenvironnement particulier, appelé niche vasculaire, dans lequel elles communiquent étroitement et échangent de manière bidirectionnelle avec l’endothélium cérébral. Sur la base d’un modèle de coculture entre CSG issues de patients, et cellules endothéliales cérébrales récapitulant les propriétés de la BHE, notre laboratoire a porté son attention sur la Sémaphorine 3A (Séma3A). Cette protéine est en effet sécrétée par les CSG et exerce, via son corécepteur Neuropiline-1 (Nrp-1), une action positive sur la perméabilité vasculaire par déstabilisation de la VE-cadhérine. Durant mes travaux de thèse, nous avons identifié et caractérisé la présence de la Séma3A à la membrane de vésicules extracellulaires (EV) produites par les CSG. Un nombre grandissant d’études met en exergue l’implication de ces vésicules dans la biologie tumorale. Dans ce sens, nous avons démontré que les EV des CSG peuvent pénétrer dans les cellules endothéliales, et moduler leurs propriétés intrinsèques. Au travers de modèles in vivo originaux et de la combinaison de stratégies génétiques (ARN interférent) et pharmacologiques (anticorps bloquant humanisés), nous avons d’une part montré que la Séma3A, portée par les EV, agit spécifiquement via la Nrp-1 exprimée par les cellules endothéliales afin d’augmenter leur perméabilité. D’autre part, dans un modèle de xénogreffe orthotopique de CSG, nous avons identifié une augmentation significative du taux de Séma3A dans la fraction de EV circulantes. De manière intéressante, des résultats similaires ont été obtenus à partir de prélèvements de patients glioblastome nouvellement diagnostiqués. La Séma3A de ces vésicules, apte à augmenter la perméabilité vasculaire à distance, in vitro et in vivo au travers de la Nrp-1, représenterait donc un bon candidat en tant que futur marqueur théranostique du glioblastome. / Brain microvessels are characterized by specific structure and organization within the neurovascular unit. Through highly selective endothelial junctions, the blood-brain barrier (BBB) controls exchanges of cells, fluids, plasmatic proteins and metabolites between blood and the cerebral compartment. VE-cadherin, a transmembrane protein of endothelial junctions, is of most importance in the vascular integrity. Indeed, its destabilization leads to BBB weakening and also breaking in some pathology. Glioblastoma is a highly aggressive brain tumour characterized by a high vascularization rate and abnormal vascular permeability. These properties promote in turn perivascular œdema, harmful for the patient. Since the last decade, a growing number of studies link glioblastoma stem-like cell (GSC) population to the initiation, recurrence and aggressiveness of such cancer. Interestingly, GSCs are located within the vascular niche, a specific microenvironment where they survive, communicate and exchange factors with the microvascular endothelium. On the base of a coculture model between patient-derived GSCs and brain microvascular endothelial cells which recapitulate BBB properties, our laboratory has focused on Semaphorin 3A (Sema3A). Sema3A is a GSC secreted protein and acts through its coreceptor Neuropilin-1 (Nrp-1) which in turn destabilizes VE-cadherin and promotes vascular permeability. During my thesis, we have identified and characterized Sema3A at the membrane of GSC secreted extracellular vesicles (EVs). A growing number of studies highlight EVs as important actors of tumour biology, in this way we have demonstrated that GSC-derived EVs can be uptake by endothelial cells and modulate their intrinsic properties. Through original in vivo models in combination with genetic (RNA interference) and pharmacologic strategies (humanised blocking antibodies), we have demonstrated that EV-carried Sema3A acts specifically through endothelial cells Nrp-1 to promote permeability. Furthermore, in orthotopic GSC xenograft we have identified a significant increase in the Sema3A EV-fraction collected from peripheral blood. Interestingly, similar results were obtained from newly diagnosed glioblastoma blood samples. Moreover, Sema3A from this fraction is a potent propermeability factor that can act at distance through Nrp-1 both in vitro and in vivo. Altogether, our results suggest that EV-carried Sema3A orchestrates loss of barrier integrity in glioblastoma and may be of interest for prognostic purposes.

Page generated in 0.0719 seconds