• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ingénierie de substrat par micro-usinage laser pour l’amélioration des performances de composants et fonctions RF intégrées en technologie SOI-CMOS / Substrate engineering using laser micromachining for improvement of RF devices and systems integrated in SOI-CMOS technology

Bhaskar, Arun 07 October 2019 (has links)
Dans l'industrie des semi-conducteurs, l'approche More-than-Moore constitue un facteur clé pour améliorer les performances du système, l'intégration et la diversification des applications. Dans le domaine des systèmes RF/hyperfréquences, il est essentiel de développer des fonctionnalités optimisées pour diverses exigences comme la linéarité, les pertes, la sensibilité, etc. Bien que la technologie silicium-sur-isolant (SOI) offre des solutions concurrentielles pour le marché des radiofréquences et des hyperfréquences, il a été démontré dans des études antérieures que l'ingénierie des substrats SOI permet d'améliorer encore les performances. Dans ce contexte, l'objet spécifique de ce travail de thèse a été d'étudier le traitement des substrats porteurs de tranches SOI (Silicium-sur-Isolant). L'objectif a consisté à enlever le substrat de silicium sous la zone active des fonctions RF pour obtenir des membranes SOI menant à des pertes RF réduites et une amélioration de la linéarité. Nous avons donc développé le procédé de micro-usinage et de gravure assistée par laser femtoseconde FLAME (Femtosecond Laser Assisted Micromachining and Etch) pour suspendre en membrane les fonctions RF intégrées sur un substrat SOI. Un taux d'ablation spécifique élevé de 8,5 x 106 µm3 s-1 a été obtenu pour produire des membranes dont la surface varie de quelques centaines de µm2 à plusieurs mm2. La caractérisation RF a été réalisée sur différentes fonctions RF suspendues : commutateurs, inductances et amplificateurs à faible bruit (LNA). Une comparaison avec des substrats SOI à haute résistivité montre des performances supérieures pour les fonctions RF intégrées en membranes. Pour le commutateur, les mesures de distorsion harmonique ont montré une amélioration de 23 dB et 6 dB des secondes et troisièmes harmoniques, respectivement. Des mesures en régime petit signal d'inductance sur membranes ont révélé un quasi-doublement du facteur de qualité Q jusqu'à 3,2 nH. L'élimination du substrat de l'inductance d'adaptation d'entrée des LNA entraine une réduction du facteur de bruit de ~0,1 dB. Ces résultats mettent en évidence le potentiel important que constitue l’ingénierie des substrats pour l'amélioration des performances RF des technologies CMOS. De plus, pour les besoins d'analyse en boucle courte, la méthode FLAME permet de quantifier très rapidement l'influence du substrat sur les pertes et la linéarité sans avoir recours à des techniques d’élimination complète. Un autre avantage distinctif de cette méthode est la possibilité de quantifier l'effet du substrat sur un circuit complet en suspendant un composant spécifique sans affecter les autres. Les méthodes de fabrication développées sont également applicables aux capteurs en technologie SOI, ce qui apporte une valeur ajoutée globale en ligne avec le paradigme More-than-Moore. / In semiconductor industry, the More-than-Moore approach is a key enabler for enhanced system performance, better integration and improved diversity of applications. Within the focus area of RF/microwave systems, it is essential to develop different functionalities which are optimized for various requirements like linearity, losses, sensitivity etc. While Silicon-on-Insulator (SOI) technology offers competitive solutions for RF/microwave market, it has been demonstrated in previous studies that SOI substrate engineering results in further performance gains. In this context, the specific goal of our work is the investigation of substrate processing of SOI RF functions using femtosecond laser ablation. The objective is to remove silicon handler substrate under the active area of the RF functions to obtain SOI membranes which have reduced RF losses and improved linearity. In this work, we have developed the Femtosecond Laser Assisted Micromachining and Etch (FLAME) process to suspend RF functions integrated on a SOI substrate. A high specific ablation rate of 8.5 x 106 µm3 s-1 has been achieved to produce membranes with a surface area ranging from few hundreds µm2 to several mm2. RF characterization has been performed on different suspended RF functions: switches, inductors and low noise amplifiers (LNA). A comparison with high-resistivity SOI substrates shows superior performance of RF functions integrated in suspended membranes. For the SP9T switch, harmonic distortion measurements showed an improvement of 23 dB and 6 dB of the second and third harmonic, respectively. Small signal measurements of inductors on membranes revealed a near doubling of the quality factor of inductors up to 3.2 nH. Substrate removal of input matching inductor on LNA resulted in reduction of noise figure by ~0.1 dB. These results highlight the great potential for use of substrate processing for improvement of RF performance in CMOS technology. In addition, for short loop analysis needs, the FLAME method allows to quantify the influence of the substrate on losses and linearity very quickly without the need for total substrate removal. Another distinctive advantage of this methodology is the ability to quantify the substrate effect on a full circuit by suspending a specific component while keeping other components unaffected. The developed fabrication methods are equally usable for sensor applications on SOI technology, which provides an overall added value in line with the More-than-Moore paradigm.
2

Caractérisation et modélisation des performances hautes fréquences des réseaux d'interconnexions de circuits avancés 3D : application à la réalisation d'imageurs de nouvelle génération

Fourneaud, Ludovic 11 December 2012 (has links) (PDF)
Le travail de doctorat réalisé s'attache à étudier les nouveaux types d'interconnexions comme les TSV (Through Silicon Via), les lignes de redistribution (RDL) et les piliers de cuivre (Cu-Pillar) présentes dans le domaine de l'intégration 3D en microélectronique avancée, par exemple pour des applications de type " imager " où une puce " capteur optique " est empilée sur une puce " processeur ". Afin de comprendre et quantifier le comportement électrique de ces nouveaux composants d'interconnexion, une première problématique de la thèse s'articulait autour de la caractérisation électrique, sur une très large bande de fréquence (10 MHz - 60 GHz) de ces éléments, enfouis dans leurs environnements complexes d'intégration, en particulier avec l'analyse de l'impact des pertes dans les substrats de silicium dans une gamme de conductivités allant de très faible (0 S/m) à très forte (10 000 S/m). Par la suite, une nouvelle problématique prend alors naissance sur la nécessité de développer des modèles mathématiques permettant de prédire le comportement électrique des interconnexions 3D. Les modèles électriques développés doivent tenir compte des pertes, des couplages ainsi que de certains phénomènes liés à la montée en fréquence (courants de Foucault) en fonction des caractéristiques matériaux, des dimensions et des architectures (haute à faible densité d'intégration). Enfin, à partir des modèles développés, une dernière partie propose une étude sur les stratégies de routage dans les empilements 3D de puces à partir d'une analyse sur l'intégrité de signaux. En opposant différents environnements, débit de signaux binaires ou dimensions des TSV et des RDL des conclusions émergent sur les stratégies à adopter pour améliorer les performances des circuits conçus en intégration 3D.
3

Compensation de la fréquence des résonateurs MEMS pour des applications de référence temps

Civet, Yoan 16 May 2012 (has links) (PDF)
A l'heure actuelle, les Micro-Electro-Mechanical-Systems (MEMS) sont devenusincontournables dans les produits technologiques quotidiens. De par leur taille,leurs performances et leur intégration, les microsystèmes résonants se sontinscrits dans la diversification de la fameuse Loi de Moore. Cependant les applications detype base de temps demeurent le segment de marché où les MEMS ne parviennent pas às'imposer durablement. En effet, grâce à une stabilité en fréquence de quelques parties parmillions, l'oscillateur à base de résonateur en Quartz reste le produit numéro 1 d'unmarché estimé à dix-sept milliards de dollars.Etant donné le lien entre la fréquence d'un résonateur silicium MEMS et ses dimensionsintrinsèques, les différentes étapes de fabrication induisent un décalage de cette fréquencepar rapport à la valeur visée. C'est donc cet écart que nous tenterons d'adresser. Dans cecontexte, nous avons proposé une nouvelle méthode de correction à l'échelle du substrat.Cette méthode consiste en une ultime étape technologique, après une première mesureélectrique des dispositifs qui permet de quantifier l'erreur, à ramener la fréquence à lavaleur souhaitée par un ajout localisé de matière. Nous montrerons qu'il est possible, enune seule étape, de réduire la Gaussienne représentative de la variation de la fréquence ausein du substrat à quelques parties par million. Pour cela, nous avons développé deuxmodèles physiques qui permettent de quantifier la correction pour atteindre les objectifs.En parallèle, nous avons mis en place un processus de fabrication compatible avec la filièreCMOS avec seulement dix-sept étapes et deux masques photolithographiques dont le pointde départ est un substrat de type SOI. Ce procédé a permis la fabrication de résonateur àmodes de flexion et ondes de volume, dont les performances intrinsèques (f et Q)permettent de concurrencer les résonateurs Quartz. Enfin, nous avons validé notre conceptet nos modèles physiques par des caractérisations électriques de nos dispositifs.L'analyse des résultats nous a permis de dresser une liste des pistes d'amélioration pourétablir une voie vers l'industrialisation durable des résonateurs MEMS. Dans un premiertemps, une attention toute particulière se portera sur le choix du substrat et la technologieutilisée pour garantir des performances optimales. La méthode de correction nécessite unemesure électrique intermédiaire, cette étape doit être précisée et il faudra s'assurer qu'ellen'augmente pas le coût global de la fonction. Bien que discutés, le packaging du MEMS etl'intégration seront des points à étudier, tout particulièrement pour conserver lesspécifications du résonateur lui-même.
4

Compensation de la fréquence des résonateurs MEMS pour des applications de référence temps / Control of the frequency of the electromechanical resonators MEMS

Civet, Yoan 16 May 2012 (has links)
A l’heure actuelle, les Micro-Electro-Mechanical-Systems (MEMS) sont devenusincontournables dans les produits technologiques quotidiens. De par leur taille,leurs performances et leur intégration, les microsystèmes résonants se sontinscrits dans la diversification de la fameuse Loi de Moore. Cependant les applications detype base de temps demeurent le segment de marché où les MEMS ne parviennent pas às’imposer durablement. En effet, grâce à une stabilité en fréquence de quelques parties parmillions, l’oscillateur à base de résonateur en Quartz reste le produit numéro 1 d’unmarché estimé à dix-sept milliards de dollars.Etant donné le lien entre la fréquence d’un résonateur silicium MEMS et ses dimensionsintrinsèques, les différentes étapes de fabrication induisent un décalage de cette fréquencepar rapport à la valeur visée. C’est donc cet écart que nous tenterons d’adresser. Dans cecontexte, nous avons proposé une nouvelle méthode de correction à l’échelle du substrat.Cette méthode consiste en une ultime étape technologique, après une première mesureélectrique des dispositifs qui permet de quantifier l’erreur, à ramener la fréquence à lavaleur souhaitée par un ajout localisé de matière. Nous montrerons qu’il est possible, enune seule étape, de réduire la Gaussienne représentative de la variation de la fréquence ausein du substrat à quelques parties par million. Pour cela, nous avons développé deuxmodèles physiques qui permettent de quantifier la correction pour atteindre les objectifs.En parallèle, nous avons mis en place un processus de fabrication compatible avec la filièreCMOS avec seulement dix-sept étapes et deux masques photolithographiques dont le pointde départ est un substrat de type SOI. Ce procédé a permis la fabrication de résonateur àmodes de flexion et ondes de volume, dont les performances intrinsèques (f et Q)permettent de concurrencer les résonateurs Quartz. Enfin, nous avons validé notre conceptet nos modèles physiques par des caractérisations électriques de nos dispositifs.L’analyse des résultats nous a permis de dresser une liste des pistes d’amélioration pourétablir une voie vers l’industrialisation durable des résonateurs MEMS. Dans un premiertemps, une attention toute particulière se portera sur le choix du substrat et la technologieutilisée pour garantir des performances optimales. La méthode de correction nécessite unemesure électrique intermédiaire, cette étape doit être précisée et il faudra s’assurer qu’ellen’augmente pas le coût global de la fonction. Bien que discutés, le packaging du MEMS etl’intégration seront des points à étudier, tout particulièrement pour conserver lesspécifications du résonateur lui-même. / Present, Micro-Electro-Mechanical-Systems (MEMS) have become essential ineveryday technology products. Thanks to their size, performances andintegration, resonant microsystems have been enrolled in the diversification ofthe famous Moore's Law. However, the time based applications remain the market segmentwhere MEMS are unable to settle permanently. Indeed, the oscillator-based Quartz is thenumber one product on the market, a market estimated at $ 17 billions, thanks to afrequency stability of a few parts per million over its lifetime.Given the link between the frequency of a MEMS resonator and its intrinsic dimensions,the various manufacturing steps induce a shift of this frequency from the target value. Wewill try to address this difference.In this context, we proposed a new method of correction across the wafer. This methodconsists of a final technological step after a first electrical measurement to quantify theshift. We will show that it is possible in one step, to reduce the Gaussian representing thefrequency variation within the wafer to a few parts per million. From this perspective, wehave developed two physical models that quantify the correction to achieve the objectives.Moreover, we set up a manufacturing process CMOS compatible with only 17 steps and2 photolithographic masks starting with a SOI wafer. This process has enabled theproduction of flexural mode resonators and bulk mode resonators, whose intrinsicperformances (f, Q) can compete with Quartz. Finally, we validated our concept and ourphysical models thanks to electrical characterization of our devices.Analysis of the results allowed us to develop a list of possible improvements to establish aroute to the industrialization of MEMS resonators. First, special attention will be focusedon the choice of substrate and the technology used to ensure perfect performances.Correction method requires a preliminary electrical measurement, this step must bedetailed and one have to ensure that it does not increase the overall cost. Although partiallystudied, the packaging of MEMS and integration are the points to consider in particularkeeping the specifications of the resonator itself.
5

Caractérisation et modélisation des performances hautes fréquences des réseaux d'interconnexions de circuits avancés 3D : application à la réalisation d'imageurs de nouvelle génération / Characterization and modelling of 3D inteconnects HF performance for new generation of 3D imagers.

Fourneaud, Ludovic 11 December 2012 (has links)
Le travail de doctorat réalisé s'attache à étudier les nouveaux types d'interconnexions comme les TSV (Through Silicon Via), les lignes de redistribution (RDL) et les piliers de cuivre (Cu-Pillar) présentes dans le domaine de l'intégration 3D en microélectronique avancée, par exemple pour des applications de type « imager » où une puce « capteur optique » est empilée sur une puce « processeur ». Afin de comprendre et quantifier le comportement électrique de ces nouveaux composants d'interconnexion, une première problématique de la thèse s'articulait autour de la caractérisation électrique, sur une très large bande de fréquence (10 MHz - 60 GHz) de ces éléments, enfouis dans leurs environnements complexes d'intégration, en particulier avec l'analyse de l'impact des pertes dans les substrats de silicium dans une gamme de conductivités allant de très faible (0 S/m) à très forte (10 000 S/m). Par la suite, une nouvelle problématique prend alors naissance sur la nécessité de développer des modèles mathématiques permettant de prédire le comportement électrique des interconnexions 3D. Les modèles électriques développés doivent tenir compte des pertes, des couplages ainsi que de certains phénomènes liés à la montée en fréquence (courants de Foucault) en fonction des caractéristiques matériaux, des dimensions et des architectures (haute à faible densité d'intégration). Enfin, à partir des modèles développés, une dernière partie propose une étude sur les stratégies de routage dans les empilements 3D de puces à partir d'une analyse sur l'intégrité de signaux. En opposant différents environnements, débit de signaux binaires ou dimensions des TSV et des RDL des conclusions émergent sur les stratégies à adopter pour améliorer les performances des circuits conçus en intégration 3D. / The aim of this doctoral work is to study the new kind of interconnections like TSV (Through Silicon Via), redistribution lines (RDL) and copper pillars used in 3D integration context in advanced microelectronic components. An example of 3D integration application could be an imager designed by staking an optical sensor chip upon a processor chip. In order to understand and quantify the electrical behaviour of these new interconnection components, the first issue was about electrical characterization in a very wide frequency band (10 MHz - 60 GHz) of these elements, buried in their complex environment, in particular with the analysis of the silicon substrate loss impact which can be found in a wide band of conductivities from very low (0 S/m) to very high (10 000 S/m). Subsequently, a second issue appears from the need to develop mathematical models to predict the electrical behavior of 3D interconnects. The developed models have to take into account losses, coupling effects and some phenomena appearing with the rise of frequency (eddy currents) according to material characteristics, dimensions and architecture (from high to low density of integration). Finally, based on developed models, the last part presents a study on routing strategies in the 3D stacking chip from the analysis of signal integrity. By contrasting various environments, binary signals flow or dimensions of TSV and RDL, conclusions emerge on the best strategies to use to improve performances of circuits designed in 3D integration.
6

Characterization and modeling of devices and amplifier circuits at millimeter wave band / Mesure et modélisation de dispositifs et d’amplificateurs aux fréquences millimétriques

Hamani, Rachid 12 December 2014 (has links)
Ces travaux de thèse portent sur l’étude des solutions innovantes de caractérisation destinées à l’amélioration de la précision du schéma équivalent petit signal à des fréquences d’ordre millimétrique. Après un état de l’art dans ce domaine et suite à plusieurs caractérisations au niveau composant, une nouvelle structure de test “nouvelle approche” est conçue, réalisée et caractérisée. Cette approche est basée sur une nouvelle méthode d’extraction du schéma équivalent petit signal à partir d’une structure adaptée. Cette méthode réalise une adaptation des impédances du transistor sous test aux impédances des équipements de mesure. Comme résultats, la transmission du signal entre la source et le composant sous test ainsi que la précision de la mesure des paramètres extraits sont améliorés. La méthode développée permet la validation des modèles compacts des composants fabriqués en technologie BiCMOS 0.25μm au niveau circuit. Les mesures réalisées ont montré une bonne amélioration de l’extraction entre un transistor sous test seul et un transistor sous test adapté. La méthode d’investigation proposée permet l’extraction des modèles à des très hautes fréquences avec une meilleure précision. Cette thèse ouvre donc des perspectives pour la caractérisation en bande millimétrique notamment caractérisation des structures adaptées en impédances et de méthodes de de-embedding dédiées à ces dernières. / This thesis deals with the study of innovative solutions for small signal characterization at millimeter wave frequency. After a state of the art in this field and following to several characterizations at device level, a new test structure “new approach” is designed, fabricated, and characterized. The approach of characterizing at circuit level is based on a new method to extract the small signal equivalent circuit using matched test structures. This method proposed here makes the DUT impedances carefully match the characteristic impedances of the measurement equipment. In results, the transmission of the signal from the source to the DUT is improved while the parameters extraction accuracy is improved. The developed method enables the BiCMOS 0.25μm compact models validation in circuit level in mm-Wave band and enables accurate parameter extraction in a narrow band at higher frequencies. The verification results demonstrated that the new test structure significantly outperformed the conventional method in measurement accuracy specifically in very high frequency. Some aspects of the matched test structure could be subject of further investigation. In particularly topics such as, characterization over multiple test structure geometries and deembedding test structure losses.
7

Conception de capteurs de gaz radiofréquences à base de nanotubes de carbone et imprimés par jet d’encre / Inkjet based RF gas sensor design using carbon nanotubes

Paragua Macuri, Carlos Alberto 21 January 2016 (has links)
Le marché des capteurs de gaz n’a pas cessé d’évoluer depuis ces dernières décennies en passant d’une technologie basée principalement sur des oxydes métalliques vers des nouveaux matériaux nanostructurés. En effet, les applications actuelles demandent des capteurs robustes, à faible consommation d'énergie, faible coût, conformables, sensibles et sélectives. Dans ce contexte, la recherche des matériaux sensibles à base de nanostructures de carbone, ainsi que des nouvelles technologies de fabrication (permettant la miniaturisation et la conformabilité des dispositifs) est nécessaire. Une de solutions actuellement à l’étude concerne l’utilisation de matériaux innovants tels que les nanotubes de carbone (CNTs). Dans ce manuscrit, les CNTs sont présentés ainsi que leurs très bonnes propriétés électriques et mécaniques. Leurs dimensions nous donnent une surface spécifique considérable et donc, la possibilité d’une grande sensibilité. Leur aptitude à être fonctionnalisés avec différents radicaux fait qu’ils puissent être sélectifs à une espèce donnée. Parmi les technologies émergentes apparues récemment, l’impression par jet d’encre est une technologie de déposition des couches minces très utilisée actuellement, car elle reste versatile grâce à sa facilité d’utilisation. La résolution et les possibilités d’impression sur différents types de substrat qu’on dispose, restent des atouts très importants. Un aspect très important qui a été peu étudié est la modélisation des couches minces des éléments sensibles. Concernant les couches imprimées des solutions contenant des nanotubes de carbone, très peu de travaux ont été répertoriés actuellement, et les modèles existants sont assez complexes. Dans nos travaux, nous nous concentrons sur la modélisation des couches minces sous la forme de motifs imprimés par jet d’encre. Des couches de solutions contenant des nanotubes de carbone sont déposées dans des structures RF, dans le but de pouvoir les appliquer dans la détection des gaz. / The gas sensor domain has continued to evolve over the past few decades by moving primarily from a technology based on metal oxides to new nanostructured materials. Indeed, for modern applications in today's world robust sensors with low power consumption, low cost, conformable, sensitive and selective is desirable. In this context, mark-sensitive materials based on carbon nanostructures, as well as new manufacturing technologies (allowing miniaturization and conformability devices) is required. One solution which is currently under consideration is the use of innovative materials such as carbon nanotubes (CNTs) which exhibit very good electrical and mechanical properties. Their dimensions give us a considerable surface area and hence the possibility of high sensitivity. Their ability to be functionalized with different groups makes them very selective to react with a particular target gas. Amongst the emerging technologies, inkjet printing deposition of a very thin film is currently in use as it remains versatile because of its ease of use. The resolution and printing possibilities on different types of substrate have remains very important assets. A very important aspect that has been considered very less is the modeling of thin film sensing elements. Regarding printed layers solutions containing carbon nanotubes, very few works have been currently listed, and the existing models are quite complex. In this work, modeling of thin layers in the form of patterns printed by inkjet has been studied and experimental verifications and their analyses have been carried out successfully. Specific emphasis has been laid on the layers of solutions containing carbon nanotubes deposited in RF structures for application in the detection of gases.
8

Développement de résonateurs électromécaniques en technologie Silicon On Nothing, à détection capacitive et amplifiée par transistor MOS, en vue d'une co-intégration permettant d'adresser une application de référence de temps

Durand, Cédric 14 January 2009 (has links) (PDF)
Les résonateurs électromécaniques (MEMS), de part leurs bonnes performances, leur petite taille, ou encore leurs possibilités d'intégration au plus proche des transistors, présentent un fort potentiel pour le remplacement des quartz dans les applications de référence de temps.<br />Dans ce contexte, nous proposons de développer des résonateurs électromécaniques en vue d'une intégration « front-end », pour la réalisation d'oscillateurs intégrés. Ainsi, nous avons fabriqué des démonstrateurs à partir des briques de base de la technologie CMOS Silicon On Nothing, en phase de R&D à STMicroelectronics. Du fait de la petite taille des composants, nous avons utilisé un transistor à grille résonante pour amplifier la détection de la résonance. Ainsi, des développements technologiques spécifiques ont permis de fabriquer les résonateurs et leur transistor de détection. La conception des dispositifs a été réalisée à partir du développement d'un modèle électromécanique des résonateurs. Ce modèle est compatible avec les outils de design et peut alors aider à la conception de l'oscillateur MEMS. Nous avons ensuite montré le bon fonctionnement des résonateurs fabriqués, ainsi que celui de l'amplification induite par la<br />détection MOS. Cette démonstration constitue une première, prouvant la fonctionnalité de la détection MOS pour un composant de petite taille, vibrant dans le plan du substrat. Enfin, nous avons validé le modèle électromécanique à partir d'autres modèles ainsi qu'avec les mesures des composants fabriqués.<br />En termes de perspectives, le recours à diverses améliorations permettrait d'obtenir des dispositifs<br />compatibles avec la réalisation d'un oscillateur performant et co-intégré.

Page generated in 0.109 seconds