Spelling suggestions: "subject:"carbohydrates."" "subject:"arbohydrates.""
851 |
Protein function prediction by integrating sequence, structure and binding affinity informationZhao, Huiying 03 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Proteins are nano-machines that work inside every living organism. Functional disruption of one or several proteins is the cause for many diseases. However, the functions for most proteins are yet to be annotated because inexpensive sequencing techniques dramatically speed up discovery of new protein sequences (265 million and counting) and experimental examinations of every protein in all its possible functional categories are simply impractical. Thus, it is necessary to develop computational function-prediction tools that complement and guide experimental studies. In this study, we developed a series of predictors for highly accurate prediction of proteins with DNA-binding, RNA-binding and carbohydrate-binding capability. These predictors are a template-based technique that combines sequence and structural information with predicted binding affinity. Both sequence and structure-based approaches were developed. Results indicate the importance of binding affinity prediction for improving sensitivity and precision of function prediction. Application of these methods to the human genome and structure genome targets demonstrated its usefulness in annotating proteins of unknown functions and discovering moon-lighting proteins with DNA,RNA, or carbohydrate binding function. In addition, we also investigated disruption of protein functions by naturally occurring genetic variations due to insertions and deletions (INDELS). We found that protein structures are the most critical features in recognising disease-causing non-frame shifting INDELs. The predictors for function predictions are available at http://sparks-lab.org/spot, and the predictor for classification of non-frame shifting INDELs is available at http://sparks-lab.org/ddig.
|
852 |
Food addiction : a cost-effective treatment proposal within a developing country contextKistenmacher, Ann 01 1900 (has links)
This study explores the possible efficacy of a low carbohydrate and high fat nutritional intervention (LCHF) as a treatment possibility aiming to improve the ability of self-control and regulation in the context of carbohydrate-addiction.
The study first outlines why increased simple carbohydrate consumption has been implicated as a risk-factor in numerous chronic conditions, and then explores the possibility that a reduction of such consumption could lower general medical expenditure in the healthcare sector of already overburdened institutions, especially in developing countries like South Africa. Since the neurobiological evidence for food addiction is compelling, this study investigates the impact of a low carbohydrate and high fat eating (LCHF) regimen by measuring the change in the severity of addictive behaviour in relation to a reduced carbohydrate consumption. Results indicate that a LCHF nutritional intervention lessened addictive behaviour after just 30 days, resulting in a statistically significant decrease in addiction symptoms from day 1 to day 30. The weight and BMI values of the participants recorded at the end of the study showed a reduction from those obtained during the pre- treatment stage, and the self-perceived ‘feeling in control’ also improved in all participants after the intervention.
The introduction of a LCHF nutritional intervention presents a relatively cost-effective treatment and preventative measure to combat carbohydrate over-consumption and its numerous health complications, and it is therefore hoped that the positive findings of this study will foster further research, using larger samples, into this type of nutritional intervention against addictive eating behaviour. / Psychology / M.A. (Psychology)
|
853 |
Undergraduate Students' Understanding and Interpretation of Carbohydrates and Glycosidic BondsJennifer Garcia (16510035) 10 July 2023 (has links)
<p>For the projects titled Undergraduate Students’ Interpretation of Fischer and Haworth Carbohydrate Projections and Undergraduate Students' Interpretation of Glycosidic Bonds – there is a prevalent issue in biochemistry education in which students display fragmented knowledge of the biochemical concepts learned when asked to illustrate their understandings (via drawings, descriptions, analysis, etc.). In science education, educators have traditionally used illustrations to support students’ development of conceptual understanding. However, interpreting a representation is dependent on prior knowledge, ability to decode visual information, and the nature of the representation itself. With a prevalence of studies conducted on visualizations, there is little research with a focus on the students’ interpretation and understanding of carbohydrates and/or glycosidic bonds. The aim of these projects focuses on how students interpret representations of carbohydrates and glycosidic bonds. This study offers a description of undergraduate students’ understanding and interpretation using semi-structured interviews through Phenomenography, Grounded Theory and the Resources Frameworks. The data suggests that students have different combinations of (low or high) accuracy and productivity for interpreting and illustrating carbohydrates and glycosidic bonds, among other findings to be highlighted in their respective chapters. More effective teaching strategies can be designed to assist students in developing expertise in proper illustrations and guide their thought process in composing proper explanations in relation to and/or presence of illustrations.</p>
<p><br></p>
<p>For the project titled Impact of the Pandemic on Student Readiness: Laboratories, Preparedness, and Support – it was based upon research by Meaders et. al (2021) published in the International Journal of STEM Education. Messaging during the first day of class is highly important in establishing positive student learning environments. Further, this research suggests that students are detecting the messages that are communicated. Thus, attention should be given to prioritizing what information and messages are most important for faculty to voice. There is little doubt that the pandemic has had a significant impact on students across the K-16 spectrum. In particular, for undergraduate chemistry instructors’, data on the number of laboratories students completed in high school and in what mode would be important information in considering what modifications could be implemented in the laboratory curriculum and in messaging about the laboratory activities – additionally on how prepared students feel to succeed at college work, how the pandemic has impacted their preparedness for learning, and what we can do to support student learning in chemistry can shape messaging on the first day and for subsequent activities in the course. An initial course survey that sought to highlight these student experiences and perspectives will be discussed along with the impact on course messaging and structure. </p>
<p><br></p>
|
Page generated in 0.0331 seconds