• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 14
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 94
  • 94
  • 33
  • 19
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spatial variations in soil and plant delta 13 C and delta 15 N values in a subtropical savanna: implications for vegetation change and nutrient dynamics

Bai, E 15 May 2009 (has links)
Grass-dominated ecosystems in many regions around the world have experienced increased abundance of woody plants during the past 100 yrs. In the Rio Grande Plains of southern Texas, subtropical woodlands, dominated by C3 trees/shrubs capable of symbiotic N2-fixation, have become significant components of landscapes that were once dominated by C4 grasslands. Upland areas in this region now consist of small discrete clusters and large groves of woody vegetation embedded in a grassy matrix, while lower-lying portions of the landscape are dominated by closed-canopy woodlands. I used soil δ13C in conjunction with aerial photography and geostatistics to quantify landscape-scale vegetation dynamics in uplands of this savanna parkland. Spatial patterns of soil δ13C in grids and transects traversing woody patches indicated larger woody groves were formed from small discrete clusters of woody plants that spread laterally and eventually coalesced. Soil δ13C contour maps revealed some clusters are currently growing rapidly towards each other and might coalesce into groves in the near future, while some clusters remained relatively stable. Kriged maps of soil δ13C provided a strong spatial context for future studies aimed at understanding the functional consequences of this change in landscape structure. The dominant invading woody plant, honey mesquite (Prosopis glandulosa), was important in determining the spatial pattern of soil δ13C, supporting the hypothesis that they serve as recruitment foci and facilitate the establishment of subordinate woody species. Leaf δ15N values suggested that the N2-fixing mesquite influenced the N nutrition of nearby non-N2-fixing shrubs, thus, suggesting a mechanism by which mesquite could facilitate establishment of other woody species. In closed-canopy drainage woodlands, however, spatial patterns of soil δ13C were no longer controlled by the presence of mesquite, but by the amount of soil organic carbon and soil texture. The positive correlation between silt+clay and soil δ13C indicates that the formation of organomineral complexes and microaggregates may slow SOC turnover rates and favor the persistence of C4-derived SOC from the original grassland. This study enhances our understanding of potential patterns, causes and consequences of grassland to woodland conversions which are underway today in many grass-dominated ecosystems around the world.
12

Temporal and Spatial Variability of Organic Carbon Isotopic Compositions of Particles Collected from Sediment Traps in the Western Okinawa Trough

Chuang, Tzu-Shen 14 July 2000 (has links)
Abstract This study is to investigate the spatial and temporal variabilities of geochemical and carbon isotopic compositions of particles collected in the region off northeast Taiwan. Organic carbon isotopic compositions (d13Corg), total organic carbon content (TOC) and C/N ratio were determined in sediment particles collected at different water depths from three time-series sediment traps (at T12, T13, and T18 stations, respectively). The results showed abnormally high mass fluxes than those previously found. Generally they increase with water depths, implying both the transport from Lanyang-Hsi River and the resuspension from the seafloor. TOC contents range from 0.5 to 1.5wt% and decrease with depths. This can be attributed to changes in the surface productivity, lateral transport and organic preservation. The organic carbon isotopic compositions range between -21 and -25o/oo, which falls well within the d13Corg values of continental margin sediments. The lower d13Corg values at T12 station than those at T13 station can be attributed to the large terrestrial inputs. It is noted that d13Corg values decrease with depths, suggesting a significant contribution of the horizontal transport of particles to the settling process.
13

Size-related Isotopic Heterogeneity in Lipids from the Marine Water Column

Close, Hilary Gwyneth 19 October 2012 (has links)
Microbes, including Bacteria, are globally important mediators of elemental transformations in the marine water column, but not until recently has their biomass been suggested to contribute significantly to carbon export flux. Here I characterize lipid and carbon isotopic signatures in marine particulate organic matter (POM) explicitly at microbial size scales, and I quantitatively explore how these signatures are transferred down the water column. In the North Pacific Subtropical Gyre (NPSG) an isotopically-enriched pool of submicron POM appears to dominate export to mesopelagic depths, supporting recent observations that bacterioplankton communities contribute to export flux in proportion to their biological abundance. In the Eastern Tropical North Pacific (ETNP) complex pathways emerge for the flux of POM to the deep ocean. I use the largest data set to date for natural \(^{13}C\) signatures of individual water column lipids to reveal that submicron and larger-size suspended POM size classes are isotopically distinct. Results point to de novo production of lipids above and within the oxygen minimum zone. I develop quantitative models to deconvolve the signatures of sinking and in situ sources of these lipids. Results converge on a best-fit model for downward flux in the ETNP that includes both surface-derived and sub-photic zone lipids. Overall results from the modern ocean suggest that approximately half of total suspended POM is submicron in size, much of it is bacterial in origin, and despite the small size of this material, it participates dynamically in water column export flux. These results also suggest some revised interpretations of organic matter signatures in the geologic record. I formulate a quantitative model of marine microbial production and degradation, and reproduce "inverse" isotopic signatures found in lipids and organic matter preserved in Proterozoic sedimentary rocks. Results suggest that the disappearance of this inverse \(^{13}C\) pattern was a consequence of the shift from Bacteria to Eukarya as dominant producers of marine autotrophic biomass. Together, results of this thesis reveal that heterogeneity in the isotopic signatures of marine suspended POM is associated with particle size, and by extension, must be a function of the composition of the total planktonic community. / Earth and Planetary Sciences
14

Water use efficiency in sunflower. Ecophysiological and genetic approaches

Adiredjo, Afifuddin Latif 08 July 2014 (has links) (PDF)
Water use efficiency (WUE), measured as the ratio of plant biomass to water consumption, is an essential agronomical trait for enhancing crop production under drought. Measuring water consumption is logistically difficult, especially in field conditions. The general objective of the present Thesis is to respond to three main questions: (i) can WUE be determined by using carbon isotope discrimination (CID), easy to measure?, (ii) how WUE and CID variation analysis can contribute to the genotypic selection of sunflower subjected to drought?, and (iii) can WUE variation be revealed by the variation of plant-water relation traits. Four experiments were carried out in greenhouse across two different years: (i) on two drought scenarios, progressive soil drying and stable water-stress, and (ii) on five levels of soil water content. The main traits that have been measured include WUE, CID, as well as plant-water relation traits, i.e. control of transpiration (FTSWt), water extraction capacity (TTSW), and dehydration tolerance (OA). A highly significant negative correlation was observed between WUE and CID, and a wide phenotypic variability was observed for both WUE and CID. A wide variability was also observed for FTSWt, TTSW and OA. The results provide new insight into the genetic control of WUE and CID related-traits, which, unlike to other crops, genetic control of WUE, CID, and TTSW in sunflower have never been reported in the literature. Further, quantitative trait loci (QTL) mapping for FTSWt was never reported in any plant species. The QTL for WUE and CID were identified across different drought scenarios. The QTL for CID is considered as a ‘‘constitutive’’ QTL, because it is consistently detected across different drought scenarios. The QTL for CID co-localized with the QTL for WUE, biomass and cumulative water transpired. Co-localization was also observed between the QTL for FTSWt and TTSW, between the QTL for TTSW and WUE-CID-biomass, as well as between the QTL for FTSWt-TTSW and biomass. This study highlights that WUE is physiologically and genetically associated with CID. CID is an excellent surrogate for WUE measurement, and can be used to improve WUE by using marker-assisted selection (MAS) to achieve the ultimate goal of plant breeding at genomic level.
15

A associação ouro-materia carbonacea e implicações na genese de mineralizações auriferas filoneanas / The gold carbonaceous-matter association and implications on the genesis of lod gold mineralizations

Silva, Gilberto de Lima Pereira 16 June 1998 (has links)
Orientador: Roberto Perez Xavier / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Geociencias / Made available in DSpace on 2018-07-25T00:05:32Z (GMT). No. of bitstreams: 1 Silva_GilbertodeLimaPereira_M.pdf: 4720997 bytes, checksum: 8740815167ddd2826e2cd76a34789793 (MD5) Previous issue date: 1998 / Resumo: Litotipos carbonosos comumente hospedam ou ocorrem associados a mineralizações auríferas filoneanas nos depósitos mesotermais da Fazenda Canto (FC) e Fazenda Maria Preta (FMP), na seqüência Paleoproterozóica do Greenstone Belt do Rio Itapicuru, NE Brasil. Nestes depósitos, a matéria carbonácea (MC) ocorre principalmente como: (i) bandas retas a anastomosadas (Tipo I); (ii) grãos individuais compostos por agregados de sub-grãos altamente anisotrópicos (Tipo II); ou (iii) grãos individuais com textura interna homogênea (Tipo III). Estudos de espectroscopia Raman indicaram que estes tipos de MC correspondem a alguma forma de material grafítico microcristalino desordenado e definem um trend de grafitização do depósito FMP para o depósito FC, que é interpretado como sendo o resultado de diferentes graus de maturação da MC, que foi alcançado durante o metamorfismo regional no fácies xisto-verde e o alojamento de corpos graníticos no Greenstone Belt do Rio Itapicuru. Estudos de inclusões fluidas revelaram que os veios de quartzo mineralizados são dominados por populações de inclusões ricas em CO2 (Tipo 1), contudo grupos de inclusões H2OCO2 (Tipo 2) primárias, de baixa salinidade (<5% eq. NaCl), compreendem o tipo de inclusões dominantes em apenas alguns veios. Ambos os tipos de fluidos mineralizantes podem ser interpretados como parte de um sistema hidrotermal magmático-metamórfico profundo. No depósito FC, o geotermômetro da clorita (variedade ripidolita - limite inferior) e a paragnese sulfetada (arsenopirita-pirita-pirrotita - limite superior) indicaram limites de temperatura para a deposição do ouro entre 390ºC e 491ºC, com pressões estimadas entre 2.4 a 4.6 kbars, respectivamente. A MC do depósito FMP é isotopicamente mais leve (g13C= -23.3 0/00 a -30.8 0/00) do que a MC do depósito FC (g13C= -18.5 0/00 a -21.0 0/00) Estes valores de g 13C, juntos com as evidências geológicas apontam uma origem biogênica orgânica para a MC. Os composição de g13C calculada do CO2 derivado da oxidação ou hidrólise da MC, aplicando o equilíbrio isotópico calcita-grafita, produziu valores de g13C no intervalo de -9.3 °/00 a -12.8 °/00 entre 390°C e 491°C. Estes valores de 813C calculados são menores do que aqueles obtidos Rara carbonatos do depósito FC (-4.8 °/00 a -8.9 °/00). Por outro lado, os valores da composição de g13C calculada de CO2 de paleo-fluidos responsáveis pela formação de carbonatos (calcita-ankerita), aplicando o equilíbrio calcita-CO2, produziu valores no intervalo de -2.3 °/00 a -6.6 °/00 para temperaturas entre 390°C e 491°C. Estes valores de g13C calculados são compatíveis com o intervalo obtido para inclusões fluidas do depósito FC (-2.8 °/00 a 4.9 °/00) e confirmam que os minerais de alteração de carbonato foram formados pela ação de fluidos oriundos de fonte magmática ou metamórfica profunda. O processo de maturação termal da MC contribuiu pouco para mudanças na composição química e isotópica do fluido mineralizante. Com relação à deposição do ouro, a MC provavelmente atuou como: (1) uma barreira química, reduzindo a 102 do fluido mineralizante ou promovendo a imiscibilidade do fluido pela adição de pequenas quantidades de CH4 e N2 à fase fluida; elou (2) uma barreira física, adsorvendo ouro sobre sua superfície como carvão ativado. Adicionalmente, a MC pode ser usada como um guia indireto na prospeção de mineralizações auríferas / Abstract: Carbonaceous units commonly host or occur closely related to the lode-gold mineralization in the mesothermal Fazenda Canto (FC) and Fazenda Maria Preta (FMP) deposits of the Paleoproterozoic Rio Itapicuru Greenstone Belt, northeast Brazil. In these deposits, the carbonaceous matter (CM) occurs mainly as: (i) straight to anastomosing seams (Type I); (ii) single grains composed of an agglomerate of highly anisotropic subgrains (Type 11); or (iii) single grains with an homogeneous internar texture (Type III). Raman spectral characteristics indicated that these types of CM correspond to some form of microcrystalline disordered graphitic material and define a graphitization trend from the FMP to the FC deposit, which is interpreted as being the result of different degrees of thermal maturation of the CM that was attained during the regional greenschist metarnorphisrn and granite intrusions of the Rio Itapicuru Greenstone Belt. Fluid inclusion studies revealed that the mineralized quartz veins are dominated by populations of CO2-rich inclusions (Type 1), whereas primary groups of low salinity (< 5 wt% eq. NaCl) H2O-CO2 (±CH4 ± N2) inclusions (type 2) comprise the dominant inclusion type in only a few veins. Both types of mineralizing fluids may be interpreted as part of a deep metamorphic - magmatic hydrothermal system. In the FC deposit, chlorite (ripidolite variety - lower limit) geothermometer and sulfide assemblage (arsenopyrite-pyrite-pyrrhotite - upper limit) indicated a temperature of gold deposition between 390 °C to 491°C with estimated pressures of 2.4 to 4.6 kbars, respectively. The CM of the FMP deposit is isotopically lighter (g13C= -23.3 0/00 to -30.8 0/00) than the CM of the FC (g13C= -18.5 0/00 to -21.0 0/00) These g13C values, together with the geologie evidence, point towards a primarily biogenic organic origin for the CM. The calculated g13C compositions of CO2 derived by the oxidation or hydrolysis of the CM, applying the equilibrium calcite - graphite fractionation, yield g13C values in the range -9.3 0/00 to -12.8 0/00 at 390°C 491ºC. These calculated g13C values are lower than those obtained from carbonates of the FC deposit (-4.8 0/00 to -8.9 0/00). On the other hand, the calculated g13C compositions of CO2 from paleo fluids responsable bicarbonate (calcite-ankerite) formation, applying the equilibrium calcite - CO2 fractionation, yield g13 C values in the range -2.3 0/00 to -6.6 0/00 at 390°C ¿ 491ºC. These calculated g13C values are compatible with the range obtained from fluid inclusions of the FC deposit (-2.8 0/00 to -4.9 0/00) and insure that carbonate alteration minerals were formed by action of fluids from a magmatic or deep metamorphic source. The thermal maturation process of the CM contributed little to changes in the chemistry and isotopic composition of the mineralizing fluid. Regarding gold deposition, the CM is likely to have acted as: (1) a chemical trap, reducing the fO2 of the mineralizing paleo-fluids or enhancing fluid immiscibility by adding small quantities of CH4 and N2 to the fluid phase; and/or (2) a physical barrier, adsorbing gold on its surface as activated carbon. Addictionally the CM may be used as a indirect guide in surveys for gold mineralization / Mestrado / Metalogenese / Mestre em Geociências
16

Contributions to the Neoproterozoic Geobiology

Shen, Bing 11 January 2008 (has links)
This thesis makes several contributions to improve our understanding of the Neoproterozoic Paleobiology. In chapter 1, a comprehensive quantitative analysis of the Ediacara fossils indicates that the oldest Ediacara assemblage "the Avalon assemblage" already encompassed the full range of Ediacara morphospace. A comparable morphospace range was occupied by the subsequent White Sea and Nama assemblages, although it was populated differently. In contrast, taxonomic richness increased in the White Sea assemblage and declined in the Nama assemblage. The Avalon morphospace expansion mirrors the Cambrian explosion, and both may reflect similar underlying mechanisms. Chapter 2 describes problematic macrofossils collected from the Neoproterozoic slate of the upper Zhengmuguan Formation in North China and sandstone of the Zhoujieshan Formation in Chaidam. Some of these fossils were previously interpreted as animal traces. Our study of these fossils recognizes four genera and five species. None of these taxa can be interpreted as animal traces. Instead, they are problematic body fossils of unresolved phylogenetic affinities. Chapter 3 reports stable isotopes of the Zhamoketi cap dolostone atop the Tereeken diamictite in the Quruqtagh area, eastern Chinese Tianshan. Our new data indicate that carbonate associated sulfate (CAS) abundance decreases rapidly in the basal cap dolostone and δ34SCAS composition varies between +9â ° and +15â ° in the lower 2.5 m. In the overlying interval, CAS abundance remains low while δ34SCAS rises ~5â ° and varies more widely between +10â ° and +21â °. δ34Spy is typically greater than δ34SCAS measured from the same samples. We propose that CAS and pyrite were derived from two isotopically distinct reservoirs in a chemically stratified basin. Chapter 4 studies δ13C, δ18O, δ34SCAS, and δ34Spy of the Zhoujieshan cap carbonate that overlies the Ediacaran Hongtiegou glaciation. The Zhoujieshan cap dolostone shows positive δ13C values (0 â 1.7â °). δ34SCAS shows rapid stratigraphic variations from +13.9 to +24.1â °, probably due to relatively low oceanic sulfate concentrations. δ34Spy shows a steady stratigraphic trend. Thus, the δ34SCAS and δ34Spy trends are decoupled from each other. The decoupling of δ34SCAS and δ34Spy trends suggests that CAS and pyrite were derived from different sulfur pools, which were probably due to the postglacial basin stratification. / Ph. D.
17

The Genetic Architecture of Water-Use Efficiency Within and Between Two Natural Populations of Foxtail Pine

Harwood, Douglas E 01 January 2015 (has links)
The goal of this project was to determine the genetic architecture of water-use efficiency (WUE) for foxtail pine, which included genomic loci, and effect sizes of this trait. Foxtail pine is a subalpine endemic conifer that inhabits two distinct regional populations separated by 500 km in the mountains of California. In order to achieve this goal, a robust linkage map containing thousands of genetic markers was created using four megagametophyte arrays ranging in size from approximately 70 to 95 megagametophytes. Quantitative trait loci (QTL) discovered for WUE were mapped along the linkage map using linear mixed models and five half-sibling families grown in a common garden. Effect sizes of these QTL were tested for differences between the two regional populations of foxtail pine.
18

Stable Carbon Isotope Evidence of Ancient Maya Agriculture at Tikal, Guatemala

Burnett, Richard Lee 07 August 2009 (has links)
Stable carbon isotope analyses of the humin fraction of the soil organic matter were conducted on more than 160 soil profiles from Tikal, Guatemala. The profiles were collected from near areas associated with the earthworks of Tikal; an ancient ditch and parapet construction hypothesized to have formed ancient boundaries of the polity. In addition to the isotope analyses, the physical and chemical characteristics of the horizons were determined. Maize, a C4 plant, formed an integral part of the ancient Maya diet and is the only known C4 plant cultivated by the Maya. Prior to and subsequent to the ancient Maya occupation of Tikal, the landscape was dominated by C3 forest vegetation. Over the centuries C4 plant biomass including rhizodeposition decomposed to form soil organic matter that contains a distinct C4 signature reflecting the vegetation history of the area. Forested areas anciently cleared for agriculture were identified through interpretation of significant isotopic shifts that signaled past vegetation changes. Buried horizons were encountered in the upland depressions and bajo wetlands. The aggraded soil deposits were likely the result of increased human activity related to settlement and agriculture. The buried horizons and the overlying sediments exhibited stable carbon isotope shifts associated with forest clearance and maize agriculture. Geospatial analysis of the stable carbon isotope ratios indicated that ancient Maya agriculture was focused on deeper footslope and toeslope soils in both bajos and upland depressions. Some evidence of infield agriculture or food processing was also encountered in connection with ancient settlement at upland locations. The soil data provide insight into ancient land use and sustainability that could potentially contribute to subsistence and population reconstruction models.
19

Biochemostratigraphy of the Llandovery (Silurian) strata of Iowa (East-Central Iowa Basin)

Waid, Christopher 01 May 2016 (has links)
The chronostratigraphic correlation of the Silurian units in Iowa is complicated by complex carbonate depositional environments and poor biostratigraphic control. In this study, we integrate conodont biostratigraphic data with carbon isotope (δ 13Ccarb) chemostratigraphic data from the Blanding, Hopkinton, Scotch Grove, and LaPorte City formations of Iowa to provide a precise chronostratigraphic framework for regional and global correlation. Conodonts from the LaPorte City Formation of eastern Iowa (East-Central Iowa Basin) in the Garrison Core indicate an early to middle Telychian age for the formation. Conodonts diagnostic of the Pterospathodus eopennatus Superzone, Pterospathodus eopennatus ssp. nov. 2 Zone, and Pterospathodus amorphognathoides angulatus Zone were recovered, allowing for the first direct comparison of the stratigraphic ranges of conodont species from the North American Midcontinent and the Baltic basin. The morphology of Pseudolonchodina fluegeli ssp. n. Männik (2007) co-occurs with Pseudolonchodina fluegeli fluegeli sensu Männik (2007a) in the LaPorte City Formation and are not stratigraphically separated in Iowa as they are in the East Baltic. Wurmiella? polinclinata polinclinata ranges much lower in the East-Central Iowa Basin (Pt. eopennatus ssp. nov. 2 Zone) than the Baltic Basin, so it cannot be used as an index fossil diagnostic of the Pt. am. amorphognathoides Zone in global correlations. Three carbon isotope excursions were recovered from the Hopkinton and Scotch Grove formations. The late Aeronian (herein renamed “Farmers Creek”) carbon isotope excursion and a heretofore unrecorded carbon isotope excursion were recorded from the Hopkinton Formation in the SS-10 Core (Jones County). The Farmers Creek Excursion can be correlated to Johnson County, where it was recorded in the Hopkinton Formation by McAdams et al. (in prep). The Valgu excursion was recovered from the uppermost Hopkinton Formation through the overlying Buck Creek Quarry Member of the Scotch Grove Formation in the Garrison Core (Benton County). This excursion can be correlated to Johnson County, where it was recorded in the same formations. The integration of conodont biostratigraphic and carbon isotope chemostratigraphic data from the Silurian of Iowa allows for the first regional chronostratigraphic correlations at a resolution finer than stage level. The oxygen and carbon isotope values from the Garrison Core and the evidence for post-diagenetic karsting and fluid movement through the units may provide further evidence that the dolomitization process of the LaPorte City Formation was halted by the influx of meteoric phreatic water. This study shows the first high-resolution chronostratigraphic correlation of Silurian units in Iowa, and highlights the utility of integrated carbon isotope chemostratigraphy as a tool for chronostratigraphic correlation in strata with poor biostratigraphic control. The conodonts recovered from the LaPorte City Formation shows the utility of the small limestone formations on the northwest flank of the East-Central Iowa Basin for refining global Silurian conodont biostratigraphic zonation.
20

Stratigraphic, Microfossil, and Geochemical Analysis of the Neoproterozoic Uinta Mountain Group, Utah: Evidence fo a Eutrophication Event?

Hayes, Dawn Schmidli 01 May 2011 (has links)
Several previous Neoproterozoic microfossil diversity studies yield evidence for arelatively sudden biotic change prior to the first well‐constrained Sturtian glaciations. In an event interpreted as a mass extinction of eukaryotic phytoplankton followed by bacterial dominance, diverse assemblages of complex acritarchs are replaced by more uniform assemblages consisting of simple leiosphaerid acritarchs and bacteria. Recent data from the Chuar Group of the Grand Canyon (770‐742 Ma) suggest this biotic change was caused by eutrophication rather than the direct effects of Sturtian glaciation; evidence includes total organic carbon increases indicative of increasing primary productivity followed by iron speciation values that suggest sustained water column anoxia. A new data set (this study) suggests that this same eutrophication event may be recorded in shale units of the formation of Hades Pass and the Red Pine Shale of Utah’s Neoproterozoic Uinta Mountain Group (770‐742 Ma). Results of this study include a significant shift from a higher‐diversity (H’= 0.60) fauna that includes some ornamented acritarchs to a lower‐diversity (H’ = 0.11) fauna dominated by smooth leiosphaerids and microfossils of a bacterial origin (Bavlinella/ Sphaerocongregus sp.). This biotic change co‐occurs with a significant increase in total iii organic carbon values that directly follows a positive carbon‐isotopic excursion, suggesting increased primary productivity that may have been the result of elevated sediment influx and nutrient availability. Both the biotic change and period of increased total organic carbon values correspond with the onset of an interval of anoxia (indicated by total iron to aluminum ratios above 0.60) and a spike in sulfur concentration. Like those reported from the Chuar Group, these biotic and geochemical changes in the upper Uinta Mountain Group are independent of changes in lithofacies , and they suggest that either a eutrophication event or direct inhibition of eukaryotes by sulfide (or perhaps both) may have been the cause of the biotic turnover. These findings support current correlations between the Uinta Mountain and Chuar Groups, the idea that the biotic turnover preserved in both strata was at least a regional phenomenon, and current models of punctuated global ocean anoxia during mid‐ to late‐Neoproterozoic time. Whether or not this hypothesized eutrophication event was more than regional in extent remains a very interesting question and will certainly be a focus of future research.

Page generated in 0.0596 seconds