• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 14
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 94
  • 94
  • 33
  • 19
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Chemical, Isotopic, and Textural Characteristics of Diamond Crystals and Their Mineral Inclusions from A154 South (Northwest Territories), Lynx (Quebec), and Kelsey Lake (Colorado): Implications for Growth Histories and Different Mantle Environments

Van Rythoven, Adrian David 31 August 2012 (has links)
Parcels of diamond crystals from the A154 South kimberlite diatreme, Northwest Territories (n=281), and the Lynx kimberlite dyke, Quebec (n=6598) were examined in terms of colour, size, morphology, and UV fluorescence (A154 South samples only). A subset of stones from each parcel (A154 South: n=60, Lynx: n=20) were cut and polished to expose internal zonation and mineral inclusions. Exposed primary mineral inclusions were quantitatively analyzed for major elements by EMPA. Diamond crystals from the Kelsey Lake kimberlite diatreme, Colorado (n=20), were cut into plates and analyzed for nitrogen aggregation states by FTIR. Twelve of these stones were then analyzed with further subsets from A154 South (n=18) and Lynx (n=16) for carbon isotope ratios and nitrogen abundances by SIMS. Every diamond crystal cut and polished had its internal zonation imaged with CL. Mineral inclusion data from A154 South and Lynx show that the mantle keel of the Slave craton is slightly less depleted than that of the Superior craton, and both are less depleted than those of the Kaapvaal and Siberian cratons. Equilibration conditions plot on hotter geothermal gradients (surface heat flows ~42 mW/m2) than for those of typical Archean cratons (≤40 mW/m2). Equilibration temperatures (~1150-1250°C) are ~100-200°C hotter than previously reported from Kelsey Lake (~1020°C). Kelsey Lake and A154 South samples have carbon isotope ratios and nitrogen contents typical of most diamond populations worldwide. Diamond crystals from Lynx are entirely different, consisting of mostly Type II diamond with δ13C (vs. PDB) values from approximately -3.6 ‰ to +1.7 ‰. These 13C-enriched samples are suggested to be the result of extreme Rayleigh fractionation of diamond from a carbonate fluid and possibly input of carbon sourced from subducted abiotic oceanic crust. Also notable is that growth trends (δ13C-[NT]) for most of the samples studied show little or no consistency with published fractionation models.
52

Advances in the reconstruction of temperature history, physiology and paleoenvironmental change : evidence from light stable isotope chemistry

Wurster, Christopher Martin 04 August 2005
<p>The rationale of this study is to apply light stable isotope chemistry towards investigations that require temporally high-resolution data. High-resolution (or high sampling frequency) data sets, are critical for testing environmental and/or paleoenvironmental hypotheses that seek to explain processes occurring over rapid or short time intervals. The investigation of climate variation (e.g., seasonality, El Niño, deglaciation), animal migration and physiology, and disturbance ecology (e.g., fire, flooding) benefits from the recovery of proxy information at decadal to subannual resolutions. The type of material used also dictates a spatial scale. Herein are presented four studies that utilize high-resolution light stable isotope profiles with contrasting temporal and spatial scales. The first study employs advances in three-dimensional computer-controlled micromilling to recover ~daily to weekly deposited carbonate from small (~1 cm) mollusc shells. Stable oxygen isotope values from freshwater mollusc shells are predictably related to the local environment of growth using previously published temperature-fractionation relationships, providing a paleoclimate record of temperature and precipitation. The second study investigates variation in stable carbon isotope values from Aplodinotus grunniens otoliths, for which high-resolution patterns were critical in assessing metabolic rate as the governing control. The third study employs high-resolution stable oxygen and carbon isotope values to determine chinook salmon (Oncorhynchus tshawytscha) seasonal and ontogenetic migration in Lake Ontario and its tributaries. Lastly, high-resolution stable hydrogen and carbon isotope values of chitin derived from Mexican free-tailed bat (Tadarida brasiliensis) guano are presented, providing a record of abrupt climate change. Thus, this thesis reports on promising new research avenues for paleoclimatology, paleoecology, and modern ecology.
53

Chemical, Isotopic, and Textural Characteristics of Diamond Crystals and Their Mineral Inclusions from A154 South (Northwest Territories), Lynx (Quebec), and Kelsey Lake (Colorado): Implications for Growth Histories and Different Mantle Environments

Van Rythoven, Adrian David 31 August 2012 (has links)
Parcels of diamond crystals from the A154 South kimberlite diatreme, Northwest Territories (n=281), and the Lynx kimberlite dyke, Quebec (n=6598) were examined in terms of colour, size, morphology, and UV fluorescence (A154 South samples only). A subset of stones from each parcel (A154 South: n=60, Lynx: n=20) were cut and polished to expose internal zonation and mineral inclusions. Exposed primary mineral inclusions were quantitatively analyzed for major elements by EMPA. Diamond crystals from the Kelsey Lake kimberlite diatreme, Colorado (n=20), were cut into plates and analyzed for nitrogen aggregation states by FTIR. Twelve of these stones were then analyzed with further subsets from A154 South (n=18) and Lynx (n=16) for carbon isotope ratios and nitrogen abundances by SIMS. Every diamond crystal cut and polished had its internal zonation imaged with CL. Mineral inclusion data from A154 South and Lynx show that the mantle keel of the Slave craton is slightly less depleted than that of the Superior craton, and both are less depleted than those of the Kaapvaal and Siberian cratons. Equilibration conditions plot on hotter geothermal gradients (surface heat flows ~42 mW/m2) than for those of typical Archean cratons (≤40 mW/m2). Equilibration temperatures (~1150-1250°C) are ~100-200°C hotter than previously reported from Kelsey Lake (~1020°C). Kelsey Lake and A154 South samples have carbon isotope ratios and nitrogen contents typical of most diamond populations worldwide. Diamond crystals from Lynx are entirely different, consisting of mostly Type II diamond with δ13C (vs. PDB) values from approximately -3.6 ‰ to +1.7 ‰. These 13C-enriched samples are suggested to be the result of extreme Rayleigh fractionation of diamond from a carbonate fluid and possibly input of carbon sourced from subducted abiotic oceanic crust. Also notable is that growth trends (δ13C-[NT]) for most of the samples studied show little or no consistency with published fractionation models.
54

Advances in the reconstruction of temperature history, physiology and paleoenvironmental change : evidence from light stable isotope chemistry

Wurster, Christopher Martin 04 August 2005 (has links)
<p>The rationale of this study is to apply light stable isotope chemistry towards investigations that require temporally high-resolution data. High-resolution (or high sampling frequency) data sets, are critical for testing environmental and/or paleoenvironmental hypotheses that seek to explain processes occurring over rapid or short time intervals. The investigation of climate variation (e.g., seasonality, El Niño, deglaciation), animal migration and physiology, and disturbance ecology (e.g., fire, flooding) benefits from the recovery of proxy information at decadal to subannual resolutions. The type of material used also dictates a spatial scale. Herein are presented four studies that utilize high-resolution light stable isotope profiles with contrasting temporal and spatial scales. The first study employs advances in three-dimensional computer-controlled micromilling to recover ~daily to weekly deposited carbonate from small (~1 cm) mollusc shells. Stable oxygen isotope values from freshwater mollusc shells are predictably related to the local environment of growth using previously published temperature-fractionation relationships, providing a paleoclimate record of temperature and precipitation. The second study investigates variation in stable carbon isotope values from Aplodinotus grunniens otoliths, for which high-resolution patterns were critical in assessing metabolic rate as the governing control. The third study employs high-resolution stable oxygen and carbon isotope values to determine chinook salmon (Oncorhynchus tshawytscha) seasonal and ontogenetic migration in Lake Ontario and its tributaries. Lastly, high-resolution stable hydrogen and carbon isotope values of chitin derived from Mexican free-tailed bat (Tadarida brasiliensis) guano are presented, providing a record of abrupt climate change. Thus, this thesis reports on promising new research avenues for paleoclimatology, paleoecology, and modern ecology.
55

Genetic mapping and physiological characterization of water-use efficiency in barley (Hordeum vulgare L.) on the Canadian Prairies

Chen, Jing Unknown Date
No description available.
56

THERMO-CHEMICAL CONVERSION OF COAL-BIOMASS BLENDS: KINETICS MODELING OF PYROLYSIS, MOVING BED GASIFICATION AND STABLE CARBON ISOTOPE ANALYSIS

Bhagavatula, Abhijit 01 January 2014 (has links)
The past few years have seen an upsurge in the use of renewable biomass as a source of energy due to growing concerns over greenhouse gas emissions caused by the combustion of fossil fuels and the need for energy independence due to depleting fossil fuel resources. Although coal will continue to be a major source of energy for many years, there is still great interest in replacing part of the coal used in energy generation with renewable biomass. Combustion converts inherent chemical energy of carbonaceous feedstock to only thermal energy. On the other hand, partial oxidation processes like gasification convert chemical energy into thermal energy as well as synthesis gas which can be easily stored or transported using existing infrastructure for downstream chemical conversion to higher value specialty chemicals as well as production of heat, hydrogen, and power. Devolatilization or pyrolysis plays an important role during gasification and is considered to be the starting point for all heterogeneous gasification reactions. Pyrolysis kinetic modeling is, therefore, an important step in analyzing interactions between blended feedstocks. The thermal evolution profiles of different coal-biomass blends were investigated at various heating rates using thermogravimetric analysis. Using MATLAB, complex models for devolatilization of the blends were solved for obtaining and predicting the global kinetic parameters. Parallel first order reactions model, distributed activation energy model and matrix inversion algorithm were utilized and compared for this purpose. Using these global kinetic parameters, devolatilization rates of unknown fuel blends gasified at unknown heating rates can be accurately predicted using the matrix inversion method. A unique laboratory scale auto-thermal moving bed gasifier was also designed and constructed for studying the thermochemical conversion of coal-biomass blends. The effect of varying operating parameters was analyzed for optimizing syngas production. In addition, stable carbon isotope analysis using Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS) was used for qualitatively and quantitatively measuring individual contributions of coal and biomass feedstocks for generation of carbonaceous gases during gasification. The predictive models utilized and experimental data obtained via these methods can provide valuable information for analyzing synergistic interactions between feedstocks and also for process modeling and optimization.
57

Carbohydrate Oxidation in Fueling Hovering Flight in the Ruby-throated Hummingbird (Archilochus colubris)

Chen, Chris Chin Wah 21 November 2012 (has links)
Nectarivorous hummingbirds subsist almost exclusively on a mixture of sucrose, glucose and fructose found in floral nectar. Previous studies have shown that hummingbirds can fuel hovering flight almost exclusively using recently ingested sucrose. However, the relative capacities for the direct utilization of glucose and fructose by hovering hummingbirds remain unknown. 13C-enriched solutions of glucose and fructose were administered separately. Exhaled breath samples were collected using feeder-mask respirometry and sent for subsequent mass spectrometric analysis. I found hovering hummingbirds transition from exclusively oxidizing endogenous fatty acids when fasted, to oxidizing newly ingested carbohydrates when given access to either glucose or fructose solutions. Interestingly, the amount ingested, fractional turnover of stable carbon isotope signatures, amount oxidized, energy expended and proportion of hovering metabolism supported by each hexose, were each similar between glucose and fructose. These results demonstrate hovering hummingbirds’ ability to utilize fructose and glucose equally.
58

Carbohydrate Oxidation in Fueling Hovering Flight in the Ruby-throated Hummingbird (Archilochus colubris)

Chen, Chris Chin Wah 21 November 2012 (has links)
Nectarivorous hummingbirds subsist almost exclusively on a mixture of sucrose, glucose and fructose found in floral nectar. Previous studies have shown that hummingbirds can fuel hovering flight almost exclusively using recently ingested sucrose. However, the relative capacities for the direct utilization of glucose and fructose by hovering hummingbirds remain unknown. 13C-enriched solutions of glucose and fructose were administered separately. Exhaled breath samples were collected using feeder-mask respirometry and sent for subsequent mass spectrometric analysis. I found hovering hummingbirds transition from exclusively oxidizing endogenous fatty acids when fasted, to oxidizing newly ingested carbohydrates when given access to either glucose or fructose solutions. Interestingly, the amount ingested, fractional turnover of stable carbon isotope signatures, amount oxidized, energy expended and proportion of hovering metabolism supported by each hexose, were each similar between glucose and fructose. These results demonstrate hovering hummingbirds’ ability to utilize fructose and glucose equally.
59

Cenozoic terrestrial palaeoenvironemtal change : an investigation of the Petrockstowe and Bovey basins, south west United Kingdom

Chaanda, Mohammed Suleiman January 2016 (has links)
The Petrockstowe and Bovey basins are two similar pull apart (strike slip) basins located on the Sticklepath – Lustleigh Fault Zone (SLFZ) in Devon, SW England. The SLFZ is one of the several faults on the Cornubian Peninsula and may be linked to Variscan structures rejuvenated in Palaeogene times. The bulk of the basins’ fill consists of clays, silts, lignites and sands of Palaeogene age, comparable to the Lough Neagh Basin (Northern Ireland), which is also thought to be part of the SLFZ. In this study a multiproxy approach involving sedimentary facies analysis, palynological analysis, stable carbon isotope (δ13C) analysis and organic carbon palaeothermometer analyses were applied in an attempt to understand the depositional environment in both basins. A negative carbon isotope excursion (CIE) with a magnitude of 2‰ was recorded at ~ 580 m in the siltstone, silty clay to clay lithofacies in the lower part of Petrockstowe Basin, with minimum δ13CTOC values of -28.6‰. The CIE spans a depth of 7 m. Palynological characteristics of this excursion are correlated with the Cogham Lignite in the southern UK, which is the only established PETM section in the UK, and other continental sections to test whether the palynology associated with this CIE can be used to date it. The age model proposed herein correlates the CIE to the Eocene Thermal Maximum -2 (ETM2; ~ 52.5Ma) event. Key pollen and spore assemblages found in the lower Petrockstowe Basin are Monocolpopollenites, Inaperturopollenites, Laevigatisporites, Bisaccate conifer pollen and Tricolporopollenites, which suggest an Eocene age, while those occurring in the upper part of the Petrockstowe and Bovey basins are Arecipites, Inaperturopollenites, Monocolpopollenites, Tricolporopollenites, Sequoiapollenites, and Pompeckjodaepollenites, which have suggested botanical affinities to modern tropical to sub-tropical genera signifying a climate that was frost-free at the time of sediment deposition. This assemblage further suggests that these sediments are Oligocene to middle Oligocene in age. In the upper part of the Petrockstowe Basin, reconstructed mean annual air temperatures (MAT) demonstrate a clear departure from the mean temperature of 24.5oC at 10 m to 19.5oC towards the top of the core, indicating a steady continuous decline similar to the temperature departures seen in the Solent Group in the Hampshire Basin, Isle of Wight, UK which has an established Eocene – Oligocene succession.
60

Energetics of maize C4 physiology under light limiting conditions

Bellasio, Chandra January 2014 (has links)
C4 plants have a biochemical carbon concentrating mechanism (CCM) that increases CO2 concentration around Rubisco in the bundle sheath (BS). Maize CCM has two CO2 delivery pathways to the Bundle Sheath (BS) (respectively via malate, MAL or aspartate, ASP); rates of PGA reduction, carbohydrate synthesis and PEP regeneration vary between BS and Mesophyll (M) cells. For these anatomical and biochemical complexities, C4 plants are highly sensitive to light conditions. Under limiting light, the activity of the CCM generally decreases, causing an increase in leakiness, (Φ), the ratio of CO2 retrodiffusing from the BS relative to C4 carboxylation processes. This increase in Φ had been theoretically associated with a decrease in biochemical operating efficiency (expressed as ATP cost of gross assimilation, ATP / GA) under low light and, because a proportion of canopy photosynthesis is carried out by shaded leaves, to potential productivity losses at field scale. In C4 leaves, because of the concentric anatomy, light reaches M cells before the deeper BS (Evans et al., 2007), and could alter the energetic partitioning balance between BS and M and potentially cause efficiency losses. In this experimental programme I investigated strategies deployed by C4 plants to adjust operating efficiency under different illumination conditions. Firstly, maize plants were grown under high and low light regimes (respectively HL, 600 vs LL, 100 μE m-2 s-1). Short term acclimation of Φ was compared from isotopic discrimination (Δ), gas exchange and photochemistry using an improved modelling approach which does not suffer from elements of circularity. Long term acclimation to low light intensities brought about physiological changes which could potentially increase the operating efficiency under limiting ATP supplies. Secondly, profiles of light penetration across a leaf were used to derive the potential ATP supply for M and BS cells induced by changing light quality. Empirical measurements of net CO2 uptake, ATP production rate and carbon isotope discrimination were made on plants under a low light intensity. The overall conversion efficiency was not affected by light quality. A comprehensive metabolic model highlighted the importance of both CO2 delivery pathways in maize. Further, metabolic plasticity allowed the balancing of ATP and NADPH requirements between BS and M. Finally, I tested the hypothesis that plants can modify their physiology so as to reach a status of higher operating efficiency when exposed to high light and then to low light, so as to mimic the transition which leaves undergo when shaded by newly emerging leaves in a crop canopy. Plants were grown under high light and low light for three weeks, then, HL plants were transferred to low light for a further three weeks. Re-acclimation was very effective in reducing ATP cost of net assimilation under low light intensities. In addition, the hyperbolic leakiness increase observed under low light intensities was not associated to operating efficiency loss. Overall, in the three experimental Chapters I showed compelling theoretical and empirical evidence proving the hypothesis that C4 plants deal with low light conditions and with different light qualities without losing operating efficiency.

Page generated in 0.0704 seconds