• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carbohydrate Oxidation in Fueling Hovering Flight in the Ruby-throated Hummingbird (Archilochus colubris)

Chen, Chris Chin Wah 21 November 2012 (has links)
Nectarivorous hummingbirds subsist almost exclusively on a mixture of sucrose, glucose and fructose found in floral nectar. Previous studies have shown that hummingbirds can fuel hovering flight almost exclusively using recently ingested sucrose. However, the relative capacities for the direct utilization of glucose and fructose by hovering hummingbirds remain unknown. 13C-enriched solutions of glucose and fructose were administered separately. Exhaled breath samples were collected using feeder-mask respirometry and sent for subsequent mass spectrometric analysis. I found hovering hummingbirds transition from exclusively oxidizing endogenous fatty acids when fasted, to oxidizing newly ingested carbohydrates when given access to either glucose or fructose solutions. Interestingly, the amount ingested, fractional turnover of stable carbon isotope signatures, amount oxidized, energy expended and proportion of hovering metabolism supported by each hexose, were each similar between glucose and fructose. These results demonstrate hovering hummingbirds’ ability to utilize fructose and glucose equally.
2

Carbohydrate Oxidation in Fueling Hovering Flight in the Ruby-throated Hummingbird (Archilochus colubris)

Chen, Chris Chin Wah 21 November 2012 (has links)
Nectarivorous hummingbirds subsist almost exclusively on a mixture of sucrose, glucose and fructose found in floral nectar. Previous studies have shown that hummingbirds can fuel hovering flight almost exclusively using recently ingested sucrose. However, the relative capacities for the direct utilization of glucose and fructose by hovering hummingbirds remain unknown. 13C-enriched solutions of glucose and fructose were administered separately. Exhaled breath samples were collected using feeder-mask respirometry and sent for subsequent mass spectrometric analysis. I found hovering hummingbirds transition from exclusively oxidizing endogenous fatty acids when fasted, to oxidizing newly ingested carbohydrates when given access to either glucose or fructose solutions. Interestingly, the amount ingested, fractional turnover of stable carbon isotope signatures, amount oxidized, energy expended and proportion of hovering metabolism supported by each hexose, were each similar between glucose and fructose. These results demonstrate hovering hummingbirds’ ability to utilize fructose and glucose equally.
3

Unsteady Aerodynamic and Aeroelastic Analysis of Flapping Flight

Gopalalkrishnan, Pradeep 22 January 2009 (has links)
The unsteady aerodynamic and aeroelastic analysis of flapping flight under various kinematics and flow parameters is presented in this dissertation. The main motivation for this study arises from the challenges facing the development of micro air vehicles. Micro air vehicles by requirement are compact with dimensions less than 15-20 cm and flight speeds of around 10-15 m/s. These vehicles operate in low Reynolds number range of 10,000 to 100,000. At these low Reynolds numbers, the aerodynamic efficiency of conventional fixed airfoils significantly deteriorates. On the other hand, flapping flight employed by birds and insects whose flight regime coincides with that of micro air vehicles offers a viable alternate solution. For the analysis of flapping flight, a boundary fitted moving grid algorithm is implemented in a flow solver, GenIDLEST. The dynamic movement of the grid is achieved using a combination of spring analogy and trans-finite interpolation on displacements. The additional conservation equation of space required for moving grid is satisfied. The solver is validated with well known flow problems such as forced oscillation of a cylinder, a heaving airfoil, a moving indentation channel, and a hovering fruitfly. The performance of flapping flight is analyzed using Large Eddy Simulation (LES) for a wide range of Reynolds numbers and under various kinematic parameters. A spiral Leading Edge Vortex (LEV) forms during the downstroke due to the high angle of attack, which results in high force production. A strong spanwise flow of the order of the flapping velocity is observed along the core of the LEV. In addition, the formation of a negative spanwise flow is observed due to the tip vortex, which slows down the removal of vorticity from the LEV. This leads to the instability of the LEV at around mid-downstroke. Analysis with different rotation kinematics shows that a continuous rotation results in better propulsive efficiency as it generates thrust during the entire flapping cycle. Analysis with different angles of attack shows that a moderate angle of attack which results in complete shedding of the LEV offers high propulsive efficiency. The analysis of flapping flight at Reynolds numbers ranging from 100 to 100,000 shows that higher lift and thrust values are obtained for Re?100. The critical reasons are that at higher Reynolds numbers, the LEV is closer to the surface and as it sheds and convects it covers most of the upper surface. However, the Reynolds number has no or little effect on the lift and thrust as identical values are obtained for Re=10,000 and 100,000. The analysis with different tip shapes shows that tip shapes do not have a significant effect on the performance. Introduction of stroke deviation to kinematics leads to drop in average lift as wing interacts with the LEV shed during the downstroke. A linear elastic membrane model with applied aerodynamic load is developed for aeroelastic analysis. Analysis with different wing stiffnesses shows that the membrane wing outperforms the rigid wing in terms of lift, thrust and propulsive efficiency. The main reason for the increase in force production is attributed to the gliding of the LEV along the camber, which results in a high pressure difference across the surface. In addition, a high stiffness along the spanwise direction and low stiffness along the chordwise direction results in a uniform camber and high lift and thrust production. / Ph. D.
4

De l'oeil élémentaire à l'oeil composé artificiel : application à la stabilisation visuelle en vol stationnaire / From elementary eye to artificial compound eye : Application to robot stabilization in hover

Juston, Raphael 25 November 2013 (has links)
La stratégie de l'équipe biorobotique est de s'inspirer de découvertes faites en biologie chez l'insecte ailé dont la vision est adaptée à la navigation autonome dans un environnement 3D inconnu. Cette inspiration donne naissance la réalisation de capteurs visuels minimalistes permettant de rendre autonomes des robots volants, pour des tâches complexes telles que : le décollage et l'atterrissage automatiques, l'évitement d'obstacles et, dans le cas de cette thèse, le vol stationnaire.Cette thèse présente la mise en œuvre des capteurs visuels minimalistes bio-inspirés qui, grâce à des algorithmes de traitement que nous avons réalisés, sont capables de localiser la position d'objets visuels en tirant partie de propriétés souvent bannies en optique : un flou, obtenu par défocalisation, associé à un micro-mouvement rétinien actif. Nous montrons que la précision en localisation ainsi obtenue est considérablement améliorée par rapport à la résolution statique définie par l'échantillonnage spatial : ces capteurs optiques bio-inspirés sont donc dotés d'hyperacuité.Cette thèse présente aussi l'œil composé artificiel miniature CurvACE (de 2,2cm3 pour 1,75g) doté d'une vision panoramique (180x60°). Cette thèse décrit la caractérisation et la mise en œuvre du capteur CurvACE sur le robot HyperRob. En fusionnant les mesures de position données par une quarantaine de pixels couvrant un grand champ visuel, l'œil CurvACE mesure sa position par rapport à un environnement visuel texturé complexe. Nous montrons aussi que le robot volant HyperRob, attaché au bout d'un bras, stabilise son roulis et sa position, dans le plan azimutal, grâce à son œil composé artificiel doté d'hyperacuité. / The biorobotics team from the Institute of Movement Sciences (Marseille, France) takes its inspiration from biological studies on flying insects which are able to navigate into unknown 3D environments with a high maneuverability. These studies led us to build minimalist optical sensors to make aerial robots autonomous for achieving complex tasks such as automatic landing and take-off, obstacle avoidance and very accurate hovering flight depicted in this doctoral thesis. This work presents several bio-inspired visual sensors implemented with different visual processing algorithms. All these sensors are able to locate visual objects (contrasting edges and bars) with unusual properties for optical sensing devices: a blur obtained by defocusing optics related with active retinal micro-movements to improve the sensor resolution. We showed that the resolution in locating contrasting objects can be improved up to 160 fold better than the static resolution defined by the pixel pitch, which means that these bio-inspired optical sensors are endowed with hyperacuity.The thesis presents a miniature artificial compound eye CurvACE (of 1.75g for 2.2cm3) with a panoramic field of view (180x60°). This thesis describes thoroughly the characterization and the implementation of the CurvACE sensor onboard an aerial robot named HyperRob. This artificial compound eye acts as a position sensing device able to measure its position relative to a complex textured scene by fusing the position measurements obtained by 40 pixels. The tethered flying robot HyperRob (a 150-g bi-rotor with a 23-cm wingspan) stabilizes its roll and its position thanks to its hyperacute artificial compound eye.
5

Stratégies de guidage visuel bio-inspirées : application à la stabilisation visuelle d’un micro-drone et à la poursuite de cibles / Strategies for bio-inspired visual guidance : application to control an UAV and to track a target

Manecy, Augustin 22 July 2015 (has links)
Les insectes sont capables de prouesses remarquables lorsqu’il s’agit d’éviter des obstacles,voler en environnement perturbé ou poursuivre une cible. Cela laisse penser que leurs capacités de traitement, aussi minimalistes soient-elles, sont parfaitement optimisées pour le vol. A cela s’ajoute des mécanismes raffinés, comme la stabilisation de la vision par rapport au corps, permettant d’améliorer encore plus leurs capacités de vol.Ces travaux de thèse présentent l’élaboration d’un micro drone de type quadrirotor, qui ressemble fortement à un insecte sur le plan perceptif (vibration rétinienne) et reprend des points structurels clés, tels que le découplage mécanique entre le corps et le système visuel. La conception du quadrirotor (de type open-source), son pilotage automatique et son système occulo-moteur sont minutieusement détaillés.Des traitements adaptés permettent, malgré un très faible nombre de pixels (24 pixels seulement), de poursuivre finement du regard une cible en mouvement. A partir de là, nous avons élaboré des stratégies basées sur le pilotage par le regard, pour stabiliser le robot en vol stationnaire, à l’aplomb d’une cible et asservir sa position ; et ce, en se passant d’une partie des capteurs habituellement utilisés en aéronautique tels que les magnétomètres et les accéléromètres. Le quadrirotor décolle, se déplace et atterrit de façon autonome en utilisant seulement ses gyromètres, son système visuel original mimant l’oeil d’un insecte et une mesure de son altitude. Toutes les expérimentations ont été validées dans une arène de vol, équipée de caméras VICON.Enfin, nous décrivons une nouvelle toolbox qui permet d’exécuter en temps réel des modèles Matlab/Simulink sur des calculateurs Linux embarqués de façon complètement automatisée (http://www.gipsalab.fr/projet/RT-MaG/). Cette solution permet d’écrire les modèles, de les simuler, d’élaborer des lois de contrôle pour enfin, piloter en temps réel, le robot sous l’environnement Simulink. Cela réduit considérablement le "time-to-flight" et offre une grande flexibilité (possibilité de superviser l’ensemble des données de vol, de modifier en temps réel les paramètres des contrôleurs, etc.). / Insects, like hoverflies are able of outstanding performances to avoid obstacles, reject disturbances and hover or track a target with great accuracy. These means that fast sensory motor reflexes are at work, even if they are minimalist, they are perfectly optimized for the flapping flight at insect scale. Additional refined mechanisms, like gaze stabilization relative to the body, allow to increase their flight capacity.In this PhD thesis, we present the design of a quadrotor, which is highly similar to an insect in terms of perception (visual system) and implements a bio-inspired gaze control system through the mechanical decoupling between the body and the visual system. The design of the quadrotor (open-source), itspilot and its decoupled eye are thoroughly detailed. New visual processing algorithms make it possible to faithfully track a moving target, in spite of a very limited number of pixels (only 24 pixels). Using this efficient gaze stabilization, we developed new strategies to stabilize the robot above a target and finely control its position relative to the target. These new strategies do not need classical aeronautic sensors like accelerometers and magnetometers. As a result, the quadrotor is able to take off, move and land automatically using only its embedded rate-gyros, its insect-like eye, and an altitude measurement. All these experiments were validated in a flying arena equipped with a VICON system. Finally, we describe a new toolbox, called RT-MaG toolbox, which generate automatically a real-time standalone application for Linux systems from a Matlab/Simulink model (http://www.gipsalab.fr/projet/RT-MaG/). These make it possible to simulate, design control laws and monitor the robot’s flight in real-time using only Matlab/Simulink. As a result, the "time-to-flight" is considerably reduced and the final application is highly reconfigurable (real-time monitoring, parameter tuning, etc.).

Page generated in 0.0928 seconds