Spelling suggestions: "subject:"carbon corrosion"" "subject:"charbon corrosion""
1 |
STUDY OF CATALYST LAYER FOR POLYMER ELECTROLYTE FUEL CELLXu, Fan 27 July 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / There are three parts in this work centered on the catalyst layer of Polymer
Electrolyte Fuel Cell (PEFC) in this thesis. The first part is for making best MEA
structure. One of the major aims of this investigation is to understand the micro-structural
organization of ionomer particles and Pt/C aggregates dispersed in a catalyst ink. The
dispersion of Nafion® ionomer particles and Pt/C catalyst aggregates in liquid media was
studied using ultra small angle x-ray scattering (USAXS) and cryogenic TEM
technologies. A systematic approach was taken to study the dispersion of each
component (i.e. ionomer particles and Pt/C aggregates) first, then the combination, last
the catalyst ink. A multiple curve fitting was used to extract the particle size, size
distribution and geometry from scattering data. The results suggests that the particle size,
size distribution and geometry of each system are not uniform, rather, vary significantly.
The results also indicate that interaction among components (i.e. ionomer particles and
Pt/C aggregates) exists. The cryogenic TEM, by which the size and geometry of particles
in a liquid can be directly observed, was used to validate the scattering results, which
shows the excellent agreement. Based on this study, a methodology of analyzing
dispersion of Pt/C particles, Nafion® particles in a catalyst ink has been developed and
can serve as a powerful tool for making a desired catalyst ink which is a critical step for
making rational designed MEA.
The carbon corrosion process is the second part of the thesis. The carbon corrosion
process of low–surface-area Pt/XC72 and high-surface-area Pt/BP2000 was investigated
xi
using an developed accelerated durability testing (ADT) method under simulated fuel cell
conditions (a Rotating Disk Electrode (RDE) approach). Compared with the complex
MEA system, this innovated approach using RDE can simply focus on carbon corrosion
process and avoid the use of MEA in which many degradation/corrosion processes
simultaneously occur. It was observed that different carbon corrosion processes resulted
in different performance (electrochemical active surface area, mass activity and double
layer capacity) decay of catalysts. The corrosion process was studied using TEM. It was
found that in the case of Pt/XC72, major corrosion occurred at the center of the Pt/XC72
particle, with some minor corrosion on the surface of the carbon particle removing some
amorphous carbon black filaments, while in the case of Pt/BP2000, the corrosion started
on the surface. The understanding of carbon corrosion process provides the guidance for
making high corrosion resistance catalysts to increase the durability performance of
PEFC.
Based on the second work, XC72 carbon blacks were etched using steam under
different time and used as a new high corrosion resistance catalysts support for the
oxygen reduction reaction. TEM results show that the center part of the XC72 particle
was more easily etched away. XRD results show that the 002 and 10 peaks of the XC72
based samples are initially sharp, but then broaden during the corrosion process. TEM
results of Pt particles show that the steam etching can improve dispersion uniformity of
Pt nanoparticles on the surface of carbon support and reduce the Pt particles size.
Electrochemical characterization results show that the mass activity of etched carbon
black for 1 hour was 1.3 and 34 times greater than that of the carbon blacks etched for 3h
and that of carbon blacks non-ecthed. ECSA of the carbon blacks was also significantly
increased after etching. MEA test showed after 45 hours testing, the performance MEA
with steam etching 1 hour XC72 based catalyst decreases much less than the MEA with
commercial catalyst. Clearly, steam etching is a simple and efficient method to increase
the performance and durability of the fuel cells catalysts.
|
2 |
Compréhension des mécanismes de dégradation des cœurs de pile à combustible PEM en application automobile / Study of MEA degradation of PEMFC for automotive applicationsDecoopman, Benjamin 03 November 2016 (has links)
Les piles à combustible à membrane échangeuses de protons (PEMFC) sont des générateurs électrochimiques permettant de produire de l’énergie propre à partir d’hydrogène. Leur fonctionnement à basses températures et leur réponse dynamique rapide en font de bons candidats pour des applications liées au transport, secteur représentant 41% des émissions de CO2 dans le monde. Malheureusement, leur développement reste aujourd’hui limité par d’importantes dégradations affectant leur durabilité.Ce doctorat s’intéresse aux mécanismes de dégradations impactant l’assemblage membrane-électrode (AME), survenant en application automobile. Trois axes de recherche sont développés, abordant réversibilité et irréversibilité, ainsi que l’interdépendance entre les choix système et la conception de l’AME.Tout d’abord, un nouveau mécanisme de dégradation du carbone, se produisant y compris à l’arrêt sous hydrogène ou sous gaz inertes humides, a été constaté. La perte de carbone représente une dégradation irréversible de la couche active, tandis que le monoxyde de carbone, produit de la corrosion, engendre une baisse de performances réversibles. De plus, il a été montré que la pénurie en air s’avère être un moyen efficace pour éliminer les dégradations réversibles dues à la contamination du catalyseur anodique et cathodique. Enfin, les moyens expérimentaux utilisés ont permis de comprendre les mécanismes survenant au cours de pénuries en air périodiques, ainsi que leurs effets sur la durabilité. Afin de pouvoir réguler la puissance par le débit d’air, une étude des effets d’un défaut en air prolongé a finalement été menée en mode galvanostatique et potentiostatique. L’ajout d’une pompe de recirculation dans le circuit cathodique permet d’homogénéiser le flux d’air et de maintenir la polarisation des cellules. / Proton-exchange membrane fuel cells (PEMFC) are electrochemical generators producing clean energy from hydrogen. Their low operating temperature and their fast dynamic response make them ideal for transport applications, a sector responsible of 41% of the CO2 emissions worldwide. Unfortunately, degradations, which reduce their durability, limit their future development.This research work focuses on membrane-electrode assembly (MEA) degradations in automotive applications. Three topics are studied, dealing with reversible and irreversible degradations, and the interdependence between system strategies and MEA preparation.A new carbon degradation mechanism has been observed, occurring even when the fuel cell is off under humidified hydrogen or inert gas. The loss of carbon induces an irreversible degradation of the catalyst layer whereas the carbon monoxide produced by the corrosion reaction affects reversibly the performances. It turns out that air starvation is a useful tool to get rid of reversible degradations due to the cathodic and anodic catalyst contamination. Experiments have been carried out to point out the mechanisms occurring during periodical air starvations as well as their impact on durability. In order to control the power of the fuel cell by air flow, the effects of permanent air starvation have finally been researched in potentiostatic and potentiodynamic modes. The introduction of a recirculation loop within the cathodic compartment enables the homogenization of the flow and the polarization of the cells.
|
3 |
Studies on Oxidative Degradation of Carbon Support of Electrocatalysts for Polymer Electrolyte Fuel Cells / 固体高分子形燃料電池における電極触媒カーボン担体の酸化劣化に関する研究Takeuchi, Norimitsu 23 May 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20579号 / 工博第4359号 / 新制||工||1678(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 作花 哲夫, 教授 河瀬 元明 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
4 |
Experimental Methods and Mathematical Models to Examine Durability of Polymer Electrolyte Membrane Fuel Cell CatalystsDhanushkodi, Shankar Raman 07 June 2013 (has links)
Proton exchange membrane fuel cells (PEMFC) are attractive energy sources for power trains in vehicles because of their low operating temperature that enables fast start-up and high power densities. Cost reduction and durability are the key issues to be solved before PEMFCs can be successfully commercialized. The major portion of fuel cell cost is associated with the catalyst layer which is typically comprised of carbon-supported Pt and ionomer. The degradation of the catalyst layer is one of the major failure modes that can cause voltage degradation and limit the service life of the fuel cell stack during operation. To develop a highly durable and better performing catalyst layer, topics such as the causes for the degradation, modes of failure, different mechanisms and effect of degradation on fuel cell performance must be studied thoroughly.
Key degradation modes of catalyst layer are carbon corrosion and Pt dissolution. These two modes change the electrode structure in the membrane electrode assembly (MEA) and result in catalyst layer thinning, CO2 evolution, Pt deposition in the membrane and Pt agglomeration. Alteration of the electrode morphology can lead to voltage degradation.
Accelerated stress tests (ASTs) which simulate the conditions and environments to which fuel cells are subject, but which can be completed in a timely manner, are commonly used to investigate the degradation of the various components. One of the current challenges in employing these ASTs is to relate the performance loss under a given set of conditions to the various life-limiting factors and material changes. In this study, various degradation modes of the cathode catalyst layer are isolated to study their relative impact on performance loss ‗Fingerprints‘ of identifiable performance losses due to carbon corrosion are developed for MEAs with 0.4 mg cm−2 cathode platinum loadings. The fingerprint is used to determine the extent of performance loss due to carbon corrosion and Pt dissolution in cases where both mechanisms operate. This method of deconvoluting the contributions to performance loss is validated by comparison to the measured performance losses when the catalyst layer is subjected to an AST in which Pt dissolution is predominant. The limitations of this method
iv
are discussed in detail. The developed fingerprint suggests that carbon loss leading to CO2 evolution during carbon corrosion ASTs contributes to performance loss of the cell. A mechanistic model for carbon corrosion of the cathode catalyst layer based on one appearing in the literature is developed and validated by comparison of the predicted carbon losses to those measured during various carbon corrosion ASTs. Practical use of the model is verified by comparing the predicted and experimentally observed performance losses. Analysis of the model reveals that the reversible adsorption of water and subsequent oxidation of the carbon site onto which water is adsorbed is the main cause of the current decay during ASTs.
Operation of PEM fuel cells at higher cell temperatures and lower relative humidities accelerates Pt dissolution in the catalyst layer during ASTs. In this study, the effects of temperature and relative humidity on MEA degradation are investigated by applying a newly developed AST protocol in which Pt dissolution is predominant and involves the application of a potentiostatic square-wave pulse with a repeating pattern of 3s at 0.6 V followed by 3s at 1.0 V. This protocol is applied at three different temperatures (40°C, 60°C and 80°C) to the same MEA. A diagnostic signature is developed to estimate kinetic losses by making use of the effective platinum surface area (EPSA) obtained from cyclic voltammograms. The analysis indicates that performance degradation occurs mainly due to the loss of Pt in electrical contact with the support and becomes particularly large at 80°C.
This Pt dissolution AST protocol is also investigated at three different relative humidities (100%, 50% and 0%). Electrochemical impedance spectroscopy measurements of the MEAs show an increase in both the polarization and ohmic resistances during the course of the AST. Analysis by cyclic voltammetry shows a slight increase in EPSA when the humidity increases from 50% to 100%. The proton resistivity of the ionomer measured by carrying out impedance measurements on MEAs with H2 being fed on the anode side and N2 on the cathode side is found to increase by the time it reaches its end-of-life state when operated under 0 % RH conditions.
|
5 |
Caractérisations de matériaux pour la réalisation de supercondensateurs pour des applications automobiles / Characterization for materials for electrochemical capacitor and its further use in automotive applicationsLiu, Yinghui 03 May 2018 (has links)
Dans le cadre d’une Convention CIFRE, la thèse est financée par la société Renault, ce travail vise à développer un supercondensateur carbone-carbone dont le coût de fabrication est compatible avec le marché automobile ; c’est en effet leur coût élevé qui constitue encore à l’heure actuelle un frein à leur développement. Dans une première partie de ce travail, il a été montré que l’essentiel du coût repose en grande partie sur la purification de l’électrolyte utilisé mais surtout du carbone activé, qui est le matériau actif d’électrode. Notre travail s’est donc focalisé sur l’étude du vieillissement électrochimique de cellules de supercondensateurs de laboratoire assemblées avec différents carbones, afin d’essayer d’identifier les phénomènes responsables du vieillissement. Un autre objectif a été d’identifier les caractéristiques que doivent présenter les carbones alternatifs candidats au remplacement des carbones commerciaux. L’étude réalisée dans ce travail de thèse a permis de définir deux modes de vieillissement différents suivants les carbones utilisés. Un premier type de vieillissement entraîne l’augmentation conjointe de la résistance série équivalente et de la capacité, dû à une dégradation/oxydation du carbone à l’électrode positive. Un second mode de vieilissement mène à l’augmentation seule de la résistance série équivalente par la formation d’une couche d’interface solide conductrice ionique. Quelque soit le mode vieillissement, aucune corrélation directe n’a pu être établie avec les fonctions de surface des carbones activés. La piste la plus probable repose sur le taux et la nature des impuretés présentes dans le carbone activé, certaines étant électroactives, voire pouvant jouer un rôle catalytique. / In the context of a CIFRE Convention, the thesis is financed by Renault s.a.s., this work aims at developing a carbon-carbon supercapacitor whose manufacturing cost is compatible with the automotive market, which still hinders their development. In a first part of this work, it has been shown that the cost mainly depends on the purity of the materials used: electrolyte but also activated carbon, the electrode active material. Our work has therefore been focused on the study of the electrochemical aging of laboratory supercapacitor cells assembled with different carbons, to identify their ageing mechanisms and to define the key features alternative carbons must achieve to replace commercial carbons. This work has evidenced two different modes of aging, depending on the carbon used. A first ageing mode results in the joint increase of the equivalent series resistance as well as the capacity, due to a degradation / oxidation of the carbon at the positive electrode. A second mode leads to the sole increase in equivalent series resistance by the formation of an ionic conductive solid interface layer. Whatever the aging mode, no clear influence of the surface functions of activated carbons could be evidenced. The most likely assumption is based on the content and the nature of the impurities present in the activated carbon, some of which are electroactive and can even play a catalytic role.
|
6 |
Electrode degradation in proton exchange membrane fuel cellsOyarce, Alejandro January 2013 (has links)
The topic of this thesis is the degradation of fuel cell electrodes in proton exchange membrane fuel cells (PEMFCs). In particular, the degradation associated with localized fuel starvation, which is often encountered during start-ups and shut-downs (SUs/SDs) of PEMFCs. At SU/SD, O2 and H2 usually coexist in the anode compartment. This situation forces the opposite electrode, i.e. the cathode, to very high potentials, resulting in the corrosion of the carbon supporting the catalyst, referred to as carbon corrosion. The aim of this thesis has been to develop methods, materials and strategies to address the issues associated to carbon corrosion in PEMFC.The extent of catalyst degradation is commonly evaluated determining the electrochemically active surface area (ECSA) of fuel cell electrode. Therefore, it was considered important to study the effect of RH, temperature and type of accelerated degradation test (ADT) on the ECSA. Low RH decreases the ECSA of the electrode, attributed to re-structuring the ionomer and loss of contact with the catalyst.In the search for more durable supports, we evaluated different accelerated degradation tests (ADTs) for carbon corrosion. Potentiostatic holds at 1.2 V vs. RHE were found to be too mild. Potentiostatic holds at 1.4 V vs. RHE were found to induce a large degree of reversibility, also attributed to ionomer re-structuring. Triangle-wave potential cycling was found to irreversibly degrade the electrode within a reasonable amount of time, closely simulating SU/SD conditions.Corrosion of carbon-based supports not only degrades the catalyst by lowering the ECSA, but also has a profound effect on the electrode morphology. Decreased electrode porosity, increased agglomerate size and ionomer enrichment all contribute to the degradation of the mass-transport properties of the cathode. Graphitized carbon fibers were found to be 5 times more corrosion resistant than conventional carbons, primarily attributed to their lower surface area. Furthermore, fibers were found to better maintain the integrity of the electrode morphology, generally showing less degradation of the mass-transport losses. Different system strategies for shut-down were evaluated. Not doing anything to the fuel cell during shut-downs is detrimental for the fuel cell. O2 consumption with a load and H2 purge of the cathode were found to give around 100 times lower degradation rates compared to not doing anything and almost 10 times lower degradation rate than a simple air purge of the anode. Finally, in-situ measurements of contact resistance showed that the contact resistance between GDL and BPP is highly dynamic and changes with operating conditions. / Denna doktorsavhandling behandlar degraderingen av polymerelektrolytbränslecellselektroder. polymerelektrolytbränslecellselektroder. Den handlar särskilt om nedbrytningen av elektroden kopplad till en degraderingsmekanism som heter ”localized fuel starvation” oftast närvarande vid uppstart och nedstängning av bränslecellen. Vid start och stopp kan syrgas och vätgas förekomma samtidigt i anoden. Detta leder till väldigt höga elektrodpotentialer i katoden. Resultatet av detta är att kolbaserade katalysatorbärare korroderar och att bränslecellens livslängd förkortas. Målet med avhandlingen har varit att utveckla metoder, material och strategier för att både öka förståelsen av denna degraderingsmekanism och för att maximera katalysatorbärarens livslängd.Ett vanligt tillvägagångsätt för att bestämma graden av katalysatorns degradering är genom mätning av den elektrokemiskt aktiva ytan hos bränslecellselektroderna. I denna avhandling har dessutom effekten av temperatur och relativ fukthalt studerats. Låga fukthalter minskar den aktiva ytan hos elektroden, vilket sannolikt orsakas av en omstrukturering av jonomeren och av kontaktförlust mellan jonomer och katalysator.Olika accelererade degraderingstester för kolkorrosion har använts. Potentiostatiska tester vid 1.2 V mot RHE visade sig vara för milda. Potentiostatiska tester vid 1.4 V mot RHE visade sig däremot medföra en hög grad av reversibilitet, som också den tros vara orsakad av en omstrukturering av jonomeren. Cykling av elektrodpotentialen degraderade istället elektroden irreversibelt, inom rimlig tid och kunde väldigt nära simulera förhållandena vid uppstart och nedstängning.Korrosionen av katalysatorbäraren medför degradering av katalysatorn och har också en stor inverkan på elektrodens morfologi. En minskad elektrodporositet, en ökad agglomeratstorlek och en anrikning av jonomeren gör att elektrodens masstransportegenskaper försämras. Grafitiska kolfibrer visade sig vara mer resistenta mot kolkorrosion än konventionella kol, främst p.g.a. deras låga ytarea. Grafitiska kolfibrer visade också en förmåga att bättre bibehålla elektrodens morfologi efter accelererade tester, vilket resulterade i lägre masstransportförluster.Olika systemstrategier för nedstängning jämfördes. Att inte göra något under nedstängning är mycket skadligt för bränslecellen. Förbrukning av syre med en last och spolning av katoden med vätgas visade 100 gånger lägre degraderingshastighet av bränslecellsprestanda jämfört med att inte göra något alls och 10 gånger lägre degraderingshastighet jämfört med spolning av anoden med luft. In-situ kontaktresistansmätningar visade att kontaktresistansen mellan bipolära plattor och GDL är dynamisk och kan ändras beroende på driftförhållandena. / <p>QC 20131104</p>
|
7 |
Corrosion of high surface area carbon supports used in proton-exchange membrane fuel cell electrodes / Corrosion des supports carbonés des électrocatalyseurs de pile à combustible basse températureCastanheira, Luis Filipe Rodrigues 14 November 2014 (has links)
Cette thèse est consacrée à l’étude des mécanismes de dégradation de noirs de carbone de forte surface spécifique (HSAC) utilisés comme supports d’électrocatalyseurs dans une pile à combustible à membrane échangeuse de protons (PEMFC). Nous avons montré que le mécanisme et les cinétiques de la corrosion électrochimique du carbone (COR) sont influencés par la présence d’ionomère Nafion®, la limite supérieure de potentiel électrochimique, la nature et le nombre de caractérisations intermédiaires présentes dans des tests de dégradation accélérés. En utilisant la spectroscopie Raman,il apparaît que la COR est sensible à la structure cristallographique des HSAC et procède plus rapidement sur les domaines désordonnés (carbone amorphe, cristallites de graphite présentant des défauts). Le taux de recouvrement en espèces oxygénées évalué par spectroscopie de photoélectrons X a été comparé à celui trouvé en intégrant l’intensité du pic quinone/hydroquinone (Q/HQ) envol tampérométrie cyclique. Finalement, une comparaison avec des matériaux carbonés ayant fonctionné pendant 12860 heures en PEMFC confirme nos principaux résultats et permet d’élaborer des stratégies pour atténuer les conséquences de la COR. / This thesis investigates the degradation mechanism of high surfacearea carbon (HSAC) supports used in proton-exchange membrane fuel cell (PEMFC) electrodes. The structural and the chemical properties of different HSAC supports were established. The effectof the Nafion® ionomer used as a proton conductor, the gas atmosphere, the upper potential limit and the intermediate electrochemical characterizations used to monitor the changes ofthe electrochemical surface area during accelerated stress tests(ASTs) were investigated. The long-term physical and chemical changes of Pt/HSAC electrocatalysts were investigated insimulated PEMFC operating conditions. Using Raman spectroscopy, we showed that the COR is strongly structure sensitive and proceeds more rapidly on disordered domains of the HSAC (amorphous carbon and defective graphite crystallites) thanon graphitic domains. The coverage with carbon surface oxides was investigated with X-ray photoelectron spectroscopy and bridged tothe intensity of the quinone/hydroquinone (Q/HQ) peak monitored by cyclic voltammetry. Finally, the analyses realized on membrane electrode assemblies operated for 12,860h disclosed a perfect agreement between model and real PEMFC operating conditions, and confirmed the structural dependency of the COR kinetics.
|
8 |
Study of catalysts with high stability for proton exchange membrane fuel cellsYang, Fan 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The innovation and investigation of catalysts in proton exchange membrane fuel cells are included in this thesis.
In the first part of this work, stability of the catalyst support of PEMFC catalyst is investigated. Nanoscale platinum particles were loaded on two different kinds of carbon supports, nano graphene sheets and functionalized carbon black/graphene hybrid were developed by the liquid phase reaction. The crystal structure of two kinds of catalysts was characterized by X-ray diffractometer (XRD). The morphology and particle size were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Pt loading was measured by thermal gravimetric analysis (TGA). The Brunauer, Emmett and Teller (BET) method was applied to test the surface area of the catalysts. The electrochemical surface area (ECSA) and mass activity during oxygen reduction reaction (ORR) process for two kinds of catalyst were tested by cyclic voltammetry method under different conditions. The stability of the catalysts were tested by accelerated durability test (ADT). The results show that although the mass activity of Pt/graphene is much lower, the stability of it is much better than that of the commercial catalyst. After adding functionalized carbon black (FCB) as spacer, the stability of the catalyst is preserved and at the meantime, the mass activity becomes higher than 20% Pt/XC72 catalyst. The lower mass activity of both catalysts are due to the limitation of the electrolyte diffusion into the carbon support because of the aggregation nature of graphene nano-sheets. After introducing functional carbon black as spacer, the mass activity and ECSA increased dramatically which proved that FCB can be applied to prevent the restacking of graphene and hence solved the diffusion problem. In the meantime, the durability was still keeping the same as Pt/graphene catalyst.
In the second part of the work, the restacking problem was solved by introducing FCB as spacers between functionalized graphene nanosheets. The same measurement was applied to test the electrochemical performance of Pt/FCB/FG catalyst. The new catalyst showed a higher mass activity compared to Pt/graphene catalyst which meant the restacking problem was partially solved. The durability of the Pt/FCB/FG catalyst was still excellent.
|
9 |
MESOSCALE AND INTERFACIAL PHYSICS IN THE CATALYST LAYER OF ELECTROCHEMICAL ENERGY CONVERSION SYSTEMSNavneet Goswami (17558940) 06 December 2023 (has links)
<p dir="ltr">Catalyzing a green hydrogen economy can accelerate progress towards achieving the goal of a sustainable energy map with net-zero carbon emissions by rapid strides. An environmentally benign electrochemical energy conversion system is the Polymer Electrolyte Fuel Cell (PEFC) which uses hydrogen as a fuel to produce electricity and is notably used in a variety of markets such as industries, commercial setups, and across the transportation sector, and is gaining prominence for use in heavy-duty vehicles such as buses and trucks. Despite its potential, the commercialization of PEFCs needs to address several challenges which are manifested in the form of mass transport limitations and deleterious mechanisms at the interfacial scale under severe operating conditions. Achieving a robust electrochemical performance in this context is predicated on desired interactions at the triple-phase boundary of the electrochemical engine of the PEFC – the porous cathode catalyst layer (CCL) where the principal oxygen reduction reaction (ORR) takes place. The liquid water produced as a byproduct of the ORR helps minimize membrane dehydration; however, excess water renders the reaction sites inactive causing reactant starvation. In addition, the oxidation of the carbonaceous support in the electrode and loss of valuable electrochemically active surface area (ECSA) pose major barriers that need to be overcome to ameliorate the life expectancy of the PEFC.</p><p dir="ltr">In this thesis, the multimodal physicochemical interactions occurring inside the catalyst layer are investigated through a synergistic blend of visualization and computational techniques. The spatiotemporal dynamics of capillary force-driven liquid transport that ensues concentration polarization thereby affecting the desired response will be probed in detail. The drop in efficacy of the ORR due to competing catalyst aging mechanisms and the impact of degradation stressors on chemical potential-induced instability will be examined. The reaction-transport-mechanics interplay in core-shell nanoparticles, a robust class of electrocatalysts that promises better mass activity compared to the single metal counterparts is further highlighted. Finally, the influence of electrode microstructural attributes on the electrochemical performance of the reverse mode of fuel cell operation, i.e., Proton Exchange Membrane Water Electrolyzers (PEMWEs) is investigated through a mesoscale lens.</p>
|
Page generated in 0.0896 seconds