Spelling suggestions: "subject:"carbon fibers."" "subject:"charbon fibers.""
121 |
Carbon material based microelectromechanical system (MEMS): fabrication and devicesXu, Wenjun 30 March 2011 (has links)
This PhD dissertation presents the exploration and development of two carbon materials, carbon nanotubes (CNTs) and carbon fiber (CF), as either key functional components or unconventional substrates for a variety of MEMS applications. Their performances in three different types of MEMS devices, namely, strain/stress sensors, vibration-powered generators and fiber solar cells, were evaluated and the working mechanisms of these two non-traditional materials in these systems were discussed. The work may potentially enable the development of new types of carbon-MEMS devices.
Firstly, a MEMS-assisted electrophoretic deposition (EPD) technique was developed, aiming to achieve controlled integration of CNT into both conventional and flexible MEMS systems. Selective deposition of electrically charged CNTs onto desired locations was realized in the EPD process through patterning of electric field lines created by the microelectrodes fabricated using MEMS techniques. A variety of 2-D and 3-D micropatterns of CNTs with controllable thickness and morphology have been successfully achieved in both rigid and elastic systems at room temperature with relatively high throughput. Studies also showed that high surface hydrophobicity of the non-conductive regions in microstructures was critical to accomplish well-defined selective micropatterning of CNTs through this strategy.
A patterned PDMS/CNT nanocomposite was then fabricated through the aforementioned approach, and was incorporated, investigated and validated in elastic force/strain microsensors. The gauge factor of the sensor exhibited a strong dependence on both the initial resistance of the device and the applied strain. Detailed analysis of the data suggests that the piezoresistive effect of this specially constructed bi-layer composite could be three folds, and the sensing mechanism may vary when physical properties of the CNT network embedded in the polymer matrix alter.
The feasibility of the PDSM/CNT nanocomposite serving as an elastic electret was further explored. The nanocomposite composed of these two non-traditional electret materials exhibited electret characteristics with reasonable charge storage stability. The power generation capacity of the corona-charged nanocomposite has been characterized and successfully demonstrated in both a ball drop experiment and the cyclic mechanical load experiments.
Lastly, in an effort to develop carbon-material-based substrates for MEMS applications, a carbon fiber-based poly-Si solar cell was designed, fabricated and investigated. This fiber-type photovoltaics (PV) takes advantage of the excellent thermal stability, electrical conductivity and spatial format of the CF, which allows CF to serve as both the building block and the electrode in the PV configuration. The photovoltaic effects of the fiber PV were demonstrated with an open-circuit voltage of 0.14 V, a short-circuit current density of 1.7 mA/cm2, and output power density of 0.059mW/cm2. The issues of this system were discussed as well.
|
122 |
Polyacrylonitrile/carbon nanotube composite fibers: reinforcement efficiency and carbonization studiesChae, Han Gi 31 March 2008 (has links)
Polyacrylonitrile (PAN)/carbon nanotube (CNT) composite fibers were made using various processing methods such as conventional solution spinning, gel spinning, and bi-component gel spinning. The detailed characterization exhibited that the smaller and longer CNT will reinforce polymer matrix mostly in tensile strength and modulus, respectively. Gel spinning combined with CNT also showed the promising potential of PAN/CNT composite fiber as precursor fiber of the next generation carbon fiber. High resolution transmission electron microscopy showed the highly ordered PAN crystal layer on the CNT, which attributed to the enhanced physical properties. The subsequent carbonization study revealed that carbonized PAN/CNT fibers have at least 50% higher tensile strength and modulus as compared to those of carbonized PAN fibers. Electrical conductivity of CNT containing carbon fiber was also 50% higher than that of carbonized PAN fiber. In order to have carbon fiber with high tensile strength, the smaller diameter precursor fiber is preferable. Bi-component gel spinning produced 1-2 µm precursor fiber, resulting in ~1 µm carbon fiber. The tensile strength of the carbonized bi-component fiber (islands fibers) is as high as 6 GPa with tensile modulus of ~500 GPa. Further processing optimization may lead to the next generation carbon fiber.
|
123 |
Fatigue crack initiation in cross-ply carbon fiber laminatesKetterer, Justin M. 09 July 2009 (has links)
The goal of this research was to investigate the tensile fatigue behavior of a carbon fiber / epoxy composite material. Specifically, the stress levels at which cracks initiated in static and fatigue loading in the 90 degree plies of a "quasi-cross ply layup" [0/905]S was investigated. For layups which contain them, cracks in composite laminates initiate and propagate from 90 degree plies (including the ubiquitous "quasi-isotropic layup" 0/±45/90). Thus, this work provides valuable insight into the fatigue behavior of the plies which originate fatigue damage. Unidirectional off-axis 90 degree and 10 degree specimens were also tested, but the bulk of testing was done on the cross-ply laminates. The project sponsors, Boeing, were in the process of extending a failure model to the case of fatigue. The body of work presented here provided empirical data for that effort.
Several different inspection techniques were used to investigate for cracking in the 90 degree plies, including: x-ray images, edge replicates, dye penetrants, and optical microscopy. Plots of the stress level at which crack initiation occurred will be presented, as well as images illustrating damage development in these layups. Comparisons are made to the experimental results of other investigations of this type of layup. Explorations of the effect of R-ratio (including R = 0.1 and 0.5), loading frequency (including 3, 10, and 30 Hz), and surface roughness (hand polished specimen edges to 1500 grit smoothness) on fatigue crack initiation were also performed. For the most damaging case (10 Hz, R = 0.1, no polishing), the crack initiation strain (0.00276) was one half of the strain at which cracks initiated in static monotonic loading (0.0054), and was 16% of the cross-ply specimen's (0 degree fiber dominated) ultimate strain value of (0.018).
|
124 |
Development of Cellulose-Based, Nanostructured, Conductive Paper for Biomolecular Extraction and Energy Storage ApplicationsRazaq, Aamir January 2011 (has links)
Conductive paper materials consisting of conductive polymers and cellulose are promising for high-tech applications (energy storage and biosciences) due to outstanding aspects of environmental friendliness, mechanical flexibility, electrical conductivity and efficient electroactive behavior. Recently, a conductive composite paper material was developed by covering the individual nanofibers of cellulose from the green algae Cladophora with a polypyrrole (PPy) layer. The PPy-Cladophora cellulose composite paper is featured with high surface area (80 m2 g-1), electronic conductivity (~2 S cm-1), thin conductive layer (~50 nm) and easily up-scalable manufacturing process. This doctoral thesis reports the development of the PPy-Cladophora composite as an electrode material in electrochemically controlled solid phase ion-exchange of biomolecules and all-polymer based energy storage devices. First, electrochemical ion-exchange properties of the PPy-Cladophora cellulose composite were investigated in electrolytes containing three different types of anions, and it was found that smaller anions (nitrate and chloride) are more readily extracted by the composite than lager anions (p-toluene sulfonate). The influence of differently sized oxidants used during polymerization on the anion extraction capacity of the composite was also studied. The composites synthesized with two different oxidizing agents, i.e. iron (III) chloride and phosphomolybdic acid (PMo), were investigated for their ability to extract anions of different sizes. It was established that the number of absorbed ions was larger for the iron (III) chloride-synthesized sample than for the PMo-synthesized sample for all four electrolytes studied. Further, PPy-Cladophora cellulose composites have shown remarkable electrochemically controlled ion extraction capacities when investigated as a solid phase extraction material for batch-wise extraction and release of DNA oligomers. In addition, composite paper was also investigated as an electrode material in the symmetric non-metal based energy storage devices. The salt and paper based energy storage devices exhibited charge capacities (38−50 mAh g−1) with reasonable cycling stability, thereby opening new possibilities for the production of environmentally friendly, cost efficient, up-scalable and lightweight energy storage systems. Finally, micron-sized chopped carbon fibers (CCFs) were incorporated as additives to improve the charge-discharge rates of paper-based energy storage devices and to enhance the DNA release efficiency. The results showed the independent cell capacitances of ~60-70 F g-1 (upto current densities of 99 mA cm2) and also improved the efficiency of DNA release from 25 to 45%.
|
125 |
Otimização da retificação tangencial plana de compósitos plásticos reforçados com fibras de carbono /Varasquim, Francisco Mateus Faria de Almeida. January 2011 (has links)
Orientador: Eduardo Carlos Bianchi / Banca: Manoel Cleber de Sampaio Alves / Banca: Reginaldo Teixeira Coelho / O programa de Pós Graduação em Ciência e Tecnologia de Materiais PosMat, tem carater institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp / Resumo: Os materiais compósitos estão se tornando essenciais e amplamente utilizados na indústria moderna, principalmente nas indústrias aeronáuticas e aeroespacial. Essa notável demanda por este tipo de material, proveniente da junção entre dois ou mais materiais distintos, pode ser explicada pelo resultado alcançado com essa combinação: propriedades específicas e otimizadas para cada aplicação. Devido à anisotropia do material, há a tendência de aparecimento de tensões residuais ou distorções estruturais, após o seu processamento. Para o devido controle destas distorções, é imperativo o processo de usinagem denominado retificação. Nesse processo de usinagem, há a necessidade da utilização de grande quantidade de fluido de corte (refrigeração convencional). Referente a preocupações ambientais, surgem métodos que visam reduzir a utilização abundante de fluidos de corte, como: a refrigeração otimizada, a técnica de mínima quantidade de lubrificação (MQL) e a retificação a seco. O presente trabalho analisou os métodos de lubri-refrigeração citados, na retificação plana de compósitos plásticos reforçados com fibras de carbono (PRFC'S), como alternativas à retificação convencional, buscando mitigar o uso de fluidos de corte no meio industrial. Essa análise através da coleta de dados sobre a eficiência do processo e a qualidade superficial das peças, através das seguintes variáveis de saída: o comportamento de força tangencial de corte, rugosidade, energia específica, relação G (volume de material removido/volume de rebolo desgastado) e microscopia eletrônica de varredura (MEV). Com os resultados obtidos, verificou-se que a técnica de MQL gerou valores mais baixos de força tangencial de corte e energia específica de retificação. Já os métodos convencional e otimizado proporcionaram um menor desgaste da ferramenta de corte, bem como um melhor acabamento superficial / Abstract: Composite materials are becoming essential and largely used in modern industry, mainly is aeronautics and aerospace industries. This notable demand for these materials, generated from the combination of two or more distinct materials, can be explained by some results obtained: unique and optimized properties specific for each application. One of the main reasons for its large use it is their structural composition, which comes from the fusion of two different materials, resulting into excellent structural properties. Due to the material anisotropy, there is a trend of appering residual stresses and structural distortions, after its processing. For the adequade control of these distortions, it is necessary a machining process called grinding. When grinding these materials, there is a need of a great quantity of cutting fluids (conventional lubrication). In relation to the environmental concerns, new methodologies arise, which intend to reduce this large quantity of cutting fluid, like optimized cooling, the minimum quantity lubrification (MQL) technique and dry grinding. The present work analyzed the aforementioned lubri-cooling methods, on surface grinding of carbon fiber reinforced plastic composities (CFRP's), as alternatives to conventional cooling, in order to mitigate the deleterious effects of cutting fluids. This analysis was conducted through data gathering concerning the process efficiency and the the workpiece surface quality, using the following output variables: bahavior of the tangential force, surface roughness, specific grinding energy, G relation and scanning electron microscopy (SEM). With the results obtained, it can be verified that the MQL technique generated the lowest values of tangential cutting force and griding specific energy. The optimized and conventional methods provided the lowest wear of the grinding wheel, as well as the better surface finishing / Mestre
|
126 |
Desenvolvimento, fabricacao e analise de falha e fratura de cilindros de fibra de carbono colapsados por pressao internaMARINUCCI, GERSON 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:45:29Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:59:14Z (GMT). No. of bitstreams: 1
07617.pdf: 22753763 bytes, checksum: 9d2426117677d278e6cd36853da9f970 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
127 |
Otimização da retificação tangencial plana de compósitos plásticos reforçados com fibras de carbonoVarasquim, Francisco Mateus Faria de Almeida [UNESP] 10 February 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:20Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-02-10Bitstream added on 2014-06-13T18:47:32Z : No. of bitstreams: 1
varasquim_fmfa_me_bauru.pdf: 3736893 bytes, checksum: d77b1a71d89e0f0dfcd0ffcd80e0ad43 (MD5) / Os materiais compósitos estão se tornando essenciais e amplamente utilizados na indústria moderna, principalmente nas indústrias aeronáuticas e aeroespacial. Essa notável demanda por este tipo de material, proveniente da junção entre dois ou mais materiais distintos, pode ser explicada pelo resultado alcançado com essa combinação: propriedades específicas e otimizadas para cada aplicação. Devido à anisotropia do material, há a tendência de aparecimento de tensões residuais ou distorções estruturais, após o seu processamento. Para o devido controle destas distorções, é imperativo o processo de usinagem denominado retificação. Nesse processo de usinagem, há a necessidade da utilização de grande quantidade de fluido de corte (refrigeração convencional). Referente a preocupações ambientais, surgem métodos que visam reduzir a utilização abundante de fluidos de corte, como: a refrigeração otimizada, a técnica de mínima quantidade de lubrificação (MQL) e a retificação a seco. O presente trabalho analisou os métodos de lubri-refrigeração citados, na retificação plana de compósitos plásticos reforçados com fibras de carbono (PRFC'S), como alternativas à retificação convencional, buscando mitigar o uso de fluidos de corte no meio industrial. Essa análise através da coleta de dados sobre a eficiência do processo e a qualidade superficial das peças, através das seguintes variáveis de saída: o comportamento de força tangencial de corte, rugosidade, energia específica, relação G (volume de material removido/volume de rebolo desgastado) e microscopia eletrônica de varredura (MEV). Com os resultados obtidos, verificou-se que a técnica de MQL gerou valores mais baixos de força tangencial de corte e energia específica de retificação. Já os métodos convencional e otimizado proporcionaram um menor desgaste da ferramenta de corte, bem como um melhor acabamento superficial / Composite materials are becoming essential and largely used in modern industry, mainly is aeronautics and aerospace industries. This notable demand for these materials, generated from the combination of two or more distinct materials, can be explained by some results obtained: unique and optimized properties specific for each application. One of the main reasons for its large use it is their structural composition, which comes from the fusion of two different materials, resulting into excellent structural properties. Due to the material anisotropy, there is a trend of appering residual stresses and structural distortions, after its processing. For the adequade control of these distortions, it is necessary a machining process called grinding. When grinding these materials, there is a need of a great quantity of cutting fluids (conventional lubrication). In relation to the environmental concerns, new methodologies arise, which intend to reduce this large quantity of cutting fluid, like optimized cooling, the minimum quantity lubrification (MQL) technique and dry grinding. The present work analyzed the aforementioned lubri-cooling methods, on surface grinding of carbon fiber reinforced plastic composities (CFRP's), as alternatives to conventional cooling, in order to mitigate the deleterious effects of cutting fluids. This analysis was conducted through data gathering concerning the process efficiency and the the workpiece surface quality, using the following output variables: bahavior of the tangential force, surface roughness, specific grinding energy, G relation and scanning electron microscopy (SEM). With the results obtained, it can be verified that the MQL technique generated the lowest values of tangential cutting force and griding specific energy. The optimized and conventional methods provided the lowest wear of the grinding wheel, as well as the better surface finishing
|
128 |
Desenvolvimento, fabricacao e analise de falha e fratura de cilindros de fibra de carbono colapsados por pressao internaMARINUCCI, GERSON 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:45:29Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:59:14Z (GMT). No. of bitstreams: 1
07617.pdf: 22753763 bytes, checksum: 9d2426117677d278e6cd36853da9f970 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
129 |
Hydrogely s uhlíkovými vlákny / Hydrogels with carbon fibersKučerová, Barbora January 2021 (has links)
This diploma thesis is focused on the study of the behaviour of carbon fibers in the hydrogel, especially the viscoelastic modules od these gels ort he coefficient of color transmission through the gel. The main goals were to optimize the samples and measure their viscoelastic modules on a rheometer, in several different modes. This was followed by simulation of physiological conditions for selected samples and their measurement on the rheometer. There was also an experiment of continuous diffusion in cuvettes, in which the penetration of the dye through the gel with the addition of fibers and for comparison also without them. Last but not least diffusion pairs were prepared.
|
130 |
Mechanická odezva dlouhými vlákny vyztuženého polymerního kompozitu / Mechanical response of long-fiber-reinforced polymer compositeŠkriniarová, Nina January 2014 (has links)
This diploma thesis is focused on monitoring of mechanical response of long-fiber reinforced polymer composite. Main part of this thesis was preparation of long-fiber reinforced composite specimens, on which matrix was reinforced by commercially sized glass fibers. For comparison of properties were prepared specimens reinforced by unsized glass fibers. Apart from preparing specimens reinforced by long glass fibers were prepared specimens contains long carbon fibers. For evaluation of mechanical response of the prepared composite specimen were used flexural test and short beam shear test. Mechanical response was evaluated with universal testing machine ZWICK Z010 and data were processed in OriginPro 8 program. Thanks to evaluation of the mechanical response of the prepared specimens was assessed adhesion to fiber-matrix interface. By examining the mechanical response or adhesion can be assessed efficiency of commercial fiber surface treatment and so standardize measurement to compare other options of surface treatments.
|
Page generated in 0.0533 seconds