• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elaboration de bioélectrodes à base de nanotubes de carbone pour la réalisation de biopiles enzymatiques Glucose/02 / Carbon nanotube-based bioelectrodes for Glucose/O2 biofuel cells

Reuillard, Bertrand 03 December 2014 (has links)
Ce mémoire est consacré à l'optimisation de la connexion enzymatique d'enzymes pour l'oxydation du glucose et la réduction de O2 sur matrices de nanotube de carbone (CNT) dans les biopiles à glucose.Premièrement, le transfert électronique indirect de la glucose oxydase (GOx) est optimisé dans une matrice nanostructurée de CNT contenant la 1,4-naphtoquinone comme médiateur rédox. Cette bioanode a ensuite été combinée avec des biocathodes similaires à bases d'enzymes à cuivre (laccase et tyrosinase). La biopile GOx-NQ/Lac a permis d'obtenir des puissances maximales de l'ordre de 1,5 mW.cm-2. Les utilisations de cette pile en décharge courte, longue et sa stabilité dans le temps ont également été étudiées. La seconde partie présente la préparation d'une autre anode basée sur la connexion indirecte d'une glucose déshydrogènase NAD+-dépendante (GDH-NAD+) comme alternative pour l'oxydation du glucose. La GDH-NAD+ a été combinée avec un catalyseur d'oxydation de NADH par différentes méthodes. Tout d'abord, elle a été encapsulée au sein du métallopolymère rédox, puis, la modification supramoléculaire a dans un second temps permis d'immobiliser le catalyseur moléculaire et l'enzyme à la surface des CNTs. Ces deux bioanodes ont permis respectivement l'obtention de courants catalytiques d'oxydation du glucose de 1,04 et 6 mA.cm-2. La seconde bioanode a été combinée avec une biocathode à base de BOD et a permis l'obtention de densités de courants maximales de l'ordre de 140 µW.cm-2 La dernière partie concerne l'élaboration d'une biocathode bienzymatique pour la réduction de O2. Le DET de la HRP sur CNTs a dans un premier temps été optimisé par modification de la surface par différents dérivés pyrène. Ensuite, la combinaison de la GOx et de la HRP sur la même électrode a permis de réduire efficacement O2 en 2 étapes. La biocathode est capable de délivrer une densité de courant maximale de l'ordre de 200 µA.cm-2. Cette dernière, combinée avec la bioanode GDH présentée précédemment a permis d'obtenir une biopile opérationnelle en conditions physiologiques et 10 mM de NAD+, en étant capable de débiter une densité de puissance maximale de l'ordre de 57 µW.cm-2. / This work focuses on the optimization of the electrical wiring of glucose oxidizing and dioxygen reducing enzymes on carbon nanotube (CNT) matrixes for glucose biofuel cells.In the first part, glucose oxidase (GOx) mediated electron transfer (MET) is optimized in nanostructured CNTs matrixes by mechanical compression of a CNTs/GOx composite containing 1,4-naphtoquinone as redox mediator. This bioanode was then combined with MCOs (laccase and tyrosinase) based biocathodes. The GOx-NQ/Lac biofuel cell was able to deliver a maximum power density of 1.5 mW.cm-2. The use of this biofuel cell in short/long time discharge and in storage has also been studied. The second part presents the preparation of another bioanode based on the indirect wiring of a NAD+-dependant glucose dehydrogenase (GDH-NAD+) as an alternative for glucose oxidation. The GDH-NAD+ has been combined with an NADH oxidation catalyst by two different techniques. The first one involves the encapsulation of the protein in the metallopolymer redox film, whereas the second one relies on the supramolecular modification of the CNTs by the molecular catalyst and the enzyme. Both bioanodes showed good catalytic properties toward glucose oxidation in presence of NAD+ with respectively 1.04 mA cm-2 and 6 mA cm-2. The latter has been combined with a BOD based biocathode to form a biofuel cell exhibiting maximum power densities of 140 µW cm-2. The last part of this work focuses on the design of a bienzymatic biocathode for O2 reduction. The DET of horseradish peroxidase (HRP) was first investigated and optimized by modification of the CNTs with pyrenes derivatives. The combination of the HRP with the GOx on the same electrode enables an efficient reduction of O2 in a 2-step process. The biocathode could exhibit maximum currents densities of 200 µA cm-2. This cathode along with the previous GDH bioanode formed a biofuel cell functional in physiological conditions and 10 mM NAD+ showing maximum power densities of 57 µW cm-2.
2

Réduction bioélectrocatalytique du dioxygène par des enzymes à cuivres connectées sur des électrodes nanostructurées et fonctionnalisées : intégration aux biopiles enzymatiques / Bioelectrocatalytic reduction of dioxygen by multi-copper oxidases oriented and connected on functionalized nanostructured electrodes : application to enzymatic biofuel cells

Lalaoui, Noémie 10 December 2015 (has links)
Dans la nature, la réduction du dioxygène est catalysée par des enzymes de la famille des oxydoréductases. A l’heure actuelle, ces protéines spécifiques et efficaces sont envisagés comme biocatalyseurs au sein de biopile enzymatique. Dans ce contexte, l’optimisation de l’orientation et de la connexion d’oxydases multi-cuivre (MCOs) pour la réduction d’O2 sur des matrices de nanotubes carbone (CNTs) fonctionnalisées a été étudiée. Dans un premier temps, le transfert électronique direct de la laccase est optimisé par la fonctionnalisation non covalente de CNTs par divers dérivés hydrophobes. La dynamique moléculaire ainsi que la modélisation électrochimique ont permis la rationalisation des performances des différentes biocathodes développées. Dans une seconde approche, la modification spécifique par des groupements pyrène de la surface de laccases modifiées par mutagénèse a également été envisagée. La fonctionnalisation supramoléculaire de CNTs par des feuillets de graphène fonctionnalisés d’une part, et par des nanoparticules d’or d’autre part, a également permis de favoriser la connexion de laccases. La seconde partie présente l’élaboration d’autres types de biocathodes basées sur la connexion directe de bilirubines oxydases. Plusieurs stratégies de fonctionnalisation covalente et non covalente de CNTs ont été envisagées. Les différentes biocathodes élaborées par l’assemblage supramoléculaire de MCOs et de matériaux nanostructurés délivrent des densités de courant de réduction du dioxygène de plusieurs mA cm-2. Ces nouvelles bioélectrodes combinées à une bioanode qui catalyse l’oxydation du glucose ont permis le développement de biopiles enzymatiques glucose/O2 délivrant des densités maximales de puissances allant de 250 µW cm-2 à 750 µW cm-2 selon les conditions expérimentales. Enfin une bioanode à base d’une hydrogénase hyperthermophile a été développée et associée à une biocathode à base de bilirubine oxydase pour former un nouveau design de biopile H2/O2. Au sein de ce dispositif, la biocathode à diffusion de gaz réduit directement l’oxygène provenant de l’air, ce qui permet de s’affranchir de l’utilisation d’une membrane séparatrice tout en protégeant l’hydrogénase de sa désactivation en présence d’oxygène. Cette nouvelle biopile délivre une densité maximale de puissance de 750 µW cm-2. / The reduction of oxygen is realized in nature by oxidoreductase enzymes. Currently, these highly specific and efficient proteins are considered as biocatalysts for the development of biofuel cells. In this context, optimizing the orientation and the connection of multicopper oxidase (MCOs) for the reduction of O2 on functionalized carbon nanotubes was studied. In the first part of this manuscript, direct electron transfer of laccase is assessed and optimized by the non-covalent functionalization of CNTs by various hydrophobic derivatives. Electrochemical modeling and molecular dynamics enabled the rationalization of the developed biocathodes efficiency. In a second approach, the specific modification by pyrene moieties of laccases surface modified by protein engineered has also been considered. Additionally, supramolecular functionalization of CNTs by modified graphene sheets and gold nanoparticles also helped to promote laccase connection. The second part presents the development of other types of biocathodes based on the direct connection of bilirubin oxidase. Several strategies of covalent and non-covalent CNTs functionalization have been considered. The different biocathodes developed by the supramolecular assembly of nanostructured materials and MCOs delivered current density of several mA cm-2 for oxygen reduction. These new bioelectrodes combined with a bioanode which catalyzes the glucose oxidation have enabled the development of glucose/O2 enzymatic biofuel cells; delivering maximum power densities from 250 µW cm-2 to 750 µW cm-2 depending on the experimental conditions. Finally a hyperthermophilic hydrogenase based bioanode was developed and associated with a bilirubin oxidase-based biocathode to form a new design of H2/O2 biofuel cell. Within this device, the gas diffusion biocathode directly reduces oxygen from the air, which eliminates the use of a separation membrane while protecting the hydrogenase from its deactivation in the presence oxygen. This new biofuel cell delivers a maximum power density of 750 µW cm-2.
3

Strukturiranje kompozitnih materijala na osnovu poli(laktida) i ugljeničnih nanocevi / Structuring of composite materials based on poly(lactide) and carbon nanotubes

Vukić Nevena 02 November 2019 (has links)
<p>U ovom radu, izvr&scaron;ena je sinteza i karakterizacija bionanokompozitnih materijala na osnovu poli(laktida) i vi&scaron;eslojnih ugljeničnih nanocevi. Ispitivan je uticaj različitih tehnika funkcionalizacije nanocevi, kao i izbor uslova sinteze i odnosa polaznih komponenti sistema, na svojstva dobijenih kompozitnih materijala na osnovu poli(L-laktida). Radi postizanja uniformne raspodele nanopunila u kompozitima, vi&scaron;eslojne ugljenične nanocevi su modifikovane hemijskom i radijacionom funkcionalizacijom. Izvr&scaron;ena je karakterizacija ugljeničnih nanocevi, sa ciljem utvrđivanja uspe&scaron;nosti primenjenih tehnika modifikacije na njihova svojstva i stepen funkcionalizacije. Metodom in situ polimerizacije L-laktida sa povr&scaron;ina modifikovanih nanocevi, pripremljene su serije uzoraka kompozitnih materijala sa različitim sadrţajem funkcionalizovanih nanocevi. Detaljno je ispitan uticaj funkcionalizovanih nanocevi na toplotna, kristalna, morfolo&scaron;ka, mehanička i električna svojstva sintetisanih kompozitnih materijala. Postignuta homogena disperzija nanocevi unutar biorazgradive, biokompatibilne matrice polimera koji se dobija iz obnovljivih sirovina, uticala je na pobolj&scaron;anje svojstava, kao i na uspostavljanje novih funkcionalnosti dobijenih materijala. Značajno pobolj&scaron;anje toplotnih i mehaničkih svojstva sintetisanih materijala, zajedno sa postignutom električnom provodljivo&scaron;ću, omogućava pro&scaron;irenje oblasti primene kompozita na osnovu poli(laktida) i ugljeničnih nanocevi.</p> / <p>In this thesis, bionanocomposites based on poly(lactide) and multi-walled carbon nanotubes were synthesized and characterised. Poly(L-lactide) was used as a matrix for the composite synthesis; the influence of nanofillers content, the methods of their functionalization, as well as the synthesis parameters, on the properties of obtained materials were investigated. In order to achieve a uniform dispersion of nanofillers in composite materials, multi-walled carbon nanotubes were modified using chemical and radiation functionalization. Characterization of carbon nanotubes was performed in order to determine the influence of applied modification techniques on their properties and degree of functionalization. A series of composite materials with different content of modified nanotubes were prepared by in situ polymerization of L-lactide from the surface of functionalized nanotubes. The influence of functionalized nanotubes on the thermal, crystal, morphological, mechanical and electrical properties of synthesized composites was investigated in detail. The homogeneous dispersion of carbon nanotubes within the biodegradable, biocompatible, biobased polymer matrix, has influenced the improvement of the properties, as well as the acquiring of new functionalities of synthesized materials. The significant improvement of thermal and mechanical properties of composites, and the achievement of its electrical conductivity, allow the field of application of composites based on poly(lactide) and carbon nanotubes to be expanded.</p>

Page generated in 0.1682 seconds