Spelling suggestions: "subject:"biopiles enzymatique"" "subject:"biopiles enzymatic""
1 |
Low molecular weight hydrogels : une stratégie de revêtement de biopiles enzymatiques pour augmenter la fonctionnalité et la biocompatibilité / Low molecular weight hydrogels as a strategy to coat enzymatic biofuel cells to enhance functionality and biocompatibilitySindhu, Kotagudda Ranganath 19 April 2019 (has links)
Les biopiles enzymatiques miniatures représentent un potentiel important pour la future génération de dispositifs médicaux implantables, utilisés pour le diagnostic, le pronostic et le traitement. Ces derniers fonctionnent actuellement avec des sources d'énergie externes. Ces biopiles utilisant les molécules présentes dans les fluides biologiques sont des dispositifs médicaux prometteurs. Le glucose, qui est abondamment disponible dans le corps, est à l’étude comme biocarburant permettant de produire de l’énergie. Les enzymes utilisées pour produire l'énergie à partir des produits biochimiques sont immobilisées sur des électrodes en or par des médiateurs redox. Cependant, la faible puissance actuellement disponible et la sensibilité des enzymes à l'environnement limitent leur application in vivo. Malgré des recherches intensives, de nombreux problèmes restent à résoudre, notamment l'amélioration de la puissance, de la stabilité et de la biocompatibilité des biopiles.La réaction à corps étranger et l'isolement du dispositif médical par la formation d'une capsule fibreuse peuvent d'une part dénaturer les enzymes et, d'autre part, entraver la diffusion des analytes et de l'oxygène. Le travail décrit dans cette thèse vise à protéger les biopiles fonctionnant à base de glucose. Afin de résoudre les problèmes mentionnés ci-dessus, les hydrogels, actuellement développés pour diverses applications telles que l'administration de médicaments, l'ingénierie tissulaire et les dispositifs médicaux, offrent des propriétés prometteuses en tant que matériaux de revêtement.La première partie de la thèse est centrée sur l'évaluation de différents hydrogels injectables de faible poids moléculaire, en analysant à la fois la gélification in vitro et in vivo, la cinétique de dégradation, la réaction à corps étranger et l'angiogenèse. Les hydrogels présentent une dégradation lente et une intégration tissulaire optimale. Une angiogenèse accrue a été observée en raison de la libération d'une molécule pro-angiogénique pendant la dégradation de l'hydrogel.Dans la seconde partie de la thèse, l'un des hydrogels étudiés a été utilisé pour recouvrir l'électrode en or : le choix de l'enzyme a été basé sur des études de stabilité in vitro. En parallèle, le processus de revêtement a été optimisé, à la fois pour son uniformité et son épaisseur. Même si un revêtement plus épais présente l’avantage de protéger l’électrode contre la réaction à corps étranger, il est nécessaire de limiter l’épaisseur afin de maintenir une diffusion efficace des analytes et de l’oxygène.Les expériences en cours décrites dans la dernière partie de la thèse sont axées sur l'optimisation de l'implantation chez le rat et la mesure de l'activité des biopiles. De plus, les électrodes ont été connectées à une antenne pour établir une communication sans fil ; en effet, cela permettrait une mesure non invasive de l'activité enzymatique.En conclusion, ces travaux ont permis d'identifier un hydrogel pouvant être utilisé pour revêtir les électrodes de biopiles. Le sous-produit libéré lors de la biodégradation favorise l'angiogenèse au voisinage du matériau. Grâce à ce revêtement, on peut donc s'attendre à un échange accru d'analytes et d'oxygène, préalable indispensable à l'activité enzymatique. / Miniature enzymatic biofuel cells hold great potential to power the future generation of implantable medical devices, which are currently working on external power sources used for diagnosis, prognosis and treatment. Enzymatic biofuel cells appear to be promising in harvesting the energy from biochemicals present in physiological body fluids. Glucose, which is abundantly available in the body, is being explored as a biofuel to harvest energy. The enzymes employed to harvest the energy from the biochemicals are electrically wired on gold electrodes by redox mediators. However, the limitation of insufficient power, and the sensitivity of the enzymes towards host environment restrict their in vivo application. Despite several attempts, numerous challenges remain to be addressed such as improved current density, increased stability, and biocompatibility of enzymatic biofuel cells.Foreign body reaction and isolation of the medical device by formation of a fibrous capsule may firstly denature the enzymes, and secondly hinder the diffusion of analytes and oxygen. The work described in this thesis aims at protecting glucose based biofuel cells. As a strategy for combatting the bottlenecks mentioned above, hydrogels, currently developed for various applications such as drug delivery, tissue engineering, and medical device, offer promising properties as coating materials.The first part of the thesis is focused on evaluating different low molecular weight injectable hydrogels by analysing both in vitro and in vivo gel formation, degradation kinetics, foreign body reaction and angiogenesis. The hydrogels exhibit slow degradation, and optimal tissue integration. Enhanced angiogenesis was observed due to a pro-angiogenic molecule released during hydrogel degradation.In the second part of the thesis, one of the studied hydrogels was used to coat the gold electrode functionalised with enzyme: the selection of the enzyme was based on in vitro stability studies. In parallel, the process of coating was optimised, both for uniformity and thickness. Although a thicker coating should protect the electrode against foreign body reaction, it was necessary to limit the thickness in order to maintain an efficient analyte and oxygen diffusion.Ongoing experiments described in the last part of the thesis are focused on the optimisation of implantation in rat and measurement of the biofuel cell activity. In addition, the electrodes were connected to an antenna for wireless communication; indeed, such a device would allow for a non-invasive measurement of enzyme activity.To conclude, this work allowed for the identification of a hydrogel that can be used to coat the electrodes of biofuel cells. The byproduct released during the biodegradation favours angiogenesis in the vicinity of the material. Thanks to this coating, we can therefore expect an enhanced exchange of analytes and oxygen, which is a prerequisite for enzyme activity.
|
2 |
Réduction bioélectrocatalytique du dioxygène par des enzymes à cuivres connectées sur des électrodes nanostructurées et fonctionnalisées : intégration aux biopiles enzymatiques / Bioelectrocatalytic reduction of dioxygen by multi-copper oxidases oriented and connected on functionalized nanostructured electrodes : application to enzymatic biofuel cellsLalaoui, Noémie 10 December 2015 (has links)
Dans la nature, la réduction du dioxygène est catalysée par des enzymes de la famille des oxydoréductases. A l’heure actuelle, ces protéines spécifiques et efficaces sont envisagés comme biocatalyseurs au sein de biopile enzymatique. Dans ce contexte, l’optimisation de l’orientation et de la connexion d’oxydases multi-cuivre (MCOs) pour la réduction d’O2 sur des matrices de nanotubes carbone (CNTs) fonctionnalisées a été étudiée. Dans un premier temps, le transfert électronique direct de la laccase est optimisé par la fonctionnalisation non covalente de CNTs par divers dérivés hydrophobes. La dynamique moléculaire ainsi que la modélisation électrochimique ont permis la rationalisation des performances des différentes biocathodes développées. Dans une seconde approche, la modification spécifique par des groupements pyrène de la surface de laccases modifiées par mutagénèse a également été envisagée. La fonctionnalisation supramoléculaire de CNTs par des feuillets de graphène fonctionnalisés d’une part, et par des nanoparticules d’or d’autre part, a également permis de favoriser la connexion de laccases. La seconde partie présente l’élaboration d’autres types de biocathodes basées sur la connexion directe de bilirubines oxydases. Plusieurs stratégies de fonctionnalisation covalente et non covalente de CNTs ont été envisagées. Les différentes biocathodes élaborées par l’assemblage supramoléculaire de MCOs et de matériaux nanostructurés délivrent des densités de courant de réduction du dioxygène de plusieurs mA cm-2. Ces nouvelles bioélectrodes combinées à une bioanode qui catalyse l’oxydation du glucose ont permis le développement de biopiles enzymatiques glucose/O2 délivrant des densités maximales de puissances allant de 250 µW cm-2 à 750 µW cm-2 selon les conditions expérimentales. Enfin une bioanode à base d’une hydrogénase hyperthermophile a été développée et associée à une biocathode à base de bilirubine oxydase pour former un nouveau design de biopile H2/O2. Au sein de ce dispositif, la biocathode à diffusion de gaz réduit directement l’oxygène provenant de l’air, ce qui permet de s’affranchir de l’utilisation d’une membrane séparatrice tout en protégeant l’hydrogénase de sa désactivation en présence d’oxygène. Cette nouvelle biopile délivre une densité maximale de puissance de 750 µW cm-2. / The reduction of oxygen is realized in nature by oxidoreductase enzymes. Currently, these highly specific and efficient proteins are considered as biocatalysts for the development of biofuel cells. In this context, optimizing the orientation and the connection of multicopper oxidase (MCOs) for the reduction of O2 on functionalized carbon nanotubes was studied. In the first part of this manuscript, direct electron transfer of laccase is assessed and optimized by the non-covalent functionalization of CNTs by various hydrophobic derivatives. Electrochemical modeling and molecular dynamics enabled the rationalization of the developed biocathodes efficiency. In a second approach, the specific modification by pyrene moieties of laccases surface modified by protein engineered has also been considered. Additionally, supramolecular functionalization of CNTs by modified graphene sheets and gold nanoparticles also helped to promote laccase connection. The second part presents the development of other types of biocathodes based on the direct connection of bilirubin oxidase. Several strategies of covalent and non-covalent CNTs functionalization have been considered. The different biocathodes developed by the supramolecular assembly of nanostructured materials and MCOs delivered current density of several mA cm-2 for oxygen reduction. These new bioelectrodes combined with a bioanode which catalyzes the glucose oxidation have enabled the development of glucose/O2 enzymatic biofuel cells; delivering maximum power densities from 250 µW cm-2 to 750 µW cm-2 depending on the experimental conditions. Finally a hyperthermophilic hydrogenase based bioanode was developed and associated with a bilirubin oxidase-based biocathode to form a new design of H2/O2 biofuel cell. Within this device, the gas diffusion biocathode directly reduces oxygen from the air, which eliminates the use of a separation membrane while protecting the hydrogenase from its deactivation in the presence oxygen. This new biofuel cell delivers a maximum power density of 750 µW cm-2.
|
3 |
Fabrication de biocathodes flexibles pour biopiles enzymatiques implantables par procédés d’impression / Flexible biocathode manufacturing for implantable enzymatic biofuel cells by printing processesLaaroussi, Awatef 13 April 2016 (has links)
Les biopiles enzymatiques, capables de convertir le glucose présent dans le fluide physiologique en électricité, sont une source d’alimentation pour les dispositifs implantables. Cependant, les faibles puissances délivrées ne permettent pas d’alimenter actuellement des organes artificiels implantables. Une nouvelle architecture de biocathode tirant profit des technologies d’impression a été testée en vue d’améliorer les performances des Biopiles implantables. Ce travail démontre la pertinence des procédés d’impression tels que le spray ultrasonique et l’héliogravure dans l’élaboration de biocathodes homogènes, fines et flexibles. Ainsi, des encres fonctionnelles, dont la formulation à base de nanotubes de carbone et de surfactant a été optimisée, ont pu être déposées sur un substrat flexible hydrophobe (feuilles de carbone). Les problèmes d’imprimabilité du substrat ont été surmontés et des couches actives flexibles ont été obtenues (épaisseur entre 5 et 10 µm). Enfin, une technique d’immobilisation non-covalente des laccases (via le pyrène adamantane) a été testée et un courant catalytique de l’ordre de 130 mA.cm-2 a été obtenu. / Enzymatic Biofuel Cells, capable of converting efficiently the glucose from extracellular fluid into electrical energy, are a power source for implantable devices. However, the power output generated by these cells is not sufficient to fulfill the energy required by implantable artificial organs. Therefore, a new packaging architecture design based on flexible materials derived from printing technologies has been explored in order to enhance the power output of this cell. This work demonstrates the relevance of printing processes such as ultrasonic spray and gravure to develop homogeneous, thin and flexible biocathodes. During this work, a carbon nanotubes / surfactant suspensions were deposited on a hydrophobic flexible substrate (carbon paper). Despite the poor printability of the substrate, flexible active layers were obtained (thickness between 5 and 10 µm). Finally, a non-covalent immobilization of laccases (via adamantane pyrene) was tested and a catalytic current of approximately 130 µA.cm-2 was obtained. mA.cm-2 was obtained.
|
Page generated in 0.0752 seconds