• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanopartículas magnéticas como suporte para imobilização de lipases / Magnetic nanoparticles as support to immobilization of lipases

Rocha, Caroline Oliveira da [UNESP] 14 March 2016 (has links)
Submitted by CAROLINE OLIVEIRA DA ROCHA null (carolnine@hotmail.com) on 2016-04-07T01:01:26Z No. of bitstreams: 1 Dissertação CAROL _final.pdf: 2850056 bytes, checksum: faa1d75413b1d7af499fafe8cb5e9700 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-04-07T16:24:41Z (GMT) No. of bitstreams: 1 rocha_co_me_araiq.pdf: 2850056 bytes, checksum: faa1d75413b1d7af499fafe8cb5e9700 (MD5) / Made available in DSpace on 2016-04-07T16:24:41Z (GMT). No. of bitstreams: 1 rocha_co_me_araiq.pdf: 2850056 bytes, checksum: faa1d75413b1d7af499fafe8cb5e9700 (MD5) Previous issue date: 2016-03-14 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / As enzimas são catalisadores de alto custo, sendo necessário a imobilização para que haja a recuperação e a reutilização tornando o processo viável economicamente. Além disso, a utilização de enzimas imobilizadas permite simplificar o modelo de reatores e o controle da reação. Assim, a imobilização é geralmente um requisito para a utilização de enzimas como biocatalisadores industriais. A escolha do suporte para imobilização depende das propriedades da enzima a ser imobilizada. Suportes sólidos podem interagir com a enzima por diferentes vias: por adsorção, ligação covalente ou encapsulamento. Um importante fator para imobilizar a enzima é que o suporte deve ser inerte e biocompatível ao ambiente, ou seja, não deve interferir na estrutura nativa da proteína e nem comprometer sua atividade biológica. Dentre as principais enzimas, as lipases hidrolisam triglicerídeos (TAG) em glicerol e ácidos graxos e por este motivo estão na classe das hidrolases. Uma proposta de imobilização destas enzimas consiste na utilização de nanoestruturas magnéticas como biocatalisadores da reação de transesterificação para a produção de biodiesel, devido à facilidade e a rápida separação das enzimas imobilizadas, a partir da mistura reacional, usando um campo magnético externo. As vantagens das enzimas imobilizadas em relação às enzimas livres surgem da sua maior estabilidade e facilidade de separação, o que acarreta economia significativa no custo global do processo, desde que o procedimento de imobilização não seja muito caro, haja boa recuperação da atividade enzimática e que a estabilidade operacional da enzima imobilizada seja suficientemente longa. O uso de enzimas imobilizadas permite a retenção do biocatalisador no reator; elevada concentração de catalisador no reator permitindo intensificar o processo; controle do microambiente da enzima; facilidade de recuperação e reutilização do catalisador, o que reduz os custos das enzimas; possibilidade de ser utilizado em sistemas contínuos. Utilizando a técnica de difração de raios X foi possível confirmar a fase magnetita nas sínteses propostas: método de coprecipitação e em meio orgânico. A funcionalização da superfície da NP e SP com APTS, foi comprovado por espectroscopia na região de infravermelho, apresentando bandas de –NH2. A técnica de DLS comprovou a funcionalização, pelo aumento dos diâmetros hidrodinâmicos das amostras NP-APTS e SP-APTS comparada a NP e SP. O ponto isoelétrico das amostras SP e SP-APTS apresentou aumento de 2,33 para 6,44. O derivado imobilizado apresentou bandas típicas de amidas. As lipases imobilizadas apresentaram diâmetros hidrodinâmicos maiores que NP-APTS e SP-APTS. Os resultados da atividade hidrolítica das enzimas suportadas foram satisfatórios, sendo que SP-APTS-LPP apresentou maior atividade. Pela análise termogravimétrica comprovou-se rendimento de imobilização de 22,86%. Determinou-se o pH ótimo da lipase imobilizada que mostrou maior atividade em pH 8 enquanto a LPP livre em pH 6,5. As medidas de temperatura ótima demostrou que o derivado imobilizado possui maior atividade que a LPP livre a 50 °C, favorecendo a utilização deste suporte em processos industriais de biodiesel que opera em altas temperaturas. Neste contexto, a síntese de suportes magnéticos porosos e a imobilização de lipases com este suporte, apresentou excelentes resultados para a aplicação em biocatálise na reação de transesterificação para a síntese de biodiesel. / Enzymes are expensive catalysts, immobilization is necessary for recovery and reuse making the process economically viable. Furthermore, use of immobilized enzymes can simplify model reactor and control reaction. Thus, immobilization is generally a requirement for use of the enzyme as an industrial biocatalyst. The choice of support for biocatalysts immobilization depends on properties of enzyme to be immobilized. Solid supports can interact with enzyme in different ways: by adsorption, covalent bonding or encapsulation. An important factor to immobilize the enzyme is that support must be inert and biocompatible to environment; it should not interfere in native structure of protein and not compromising their biological activity. The main enzymes, lipases hydrolyze triglycerides (TAG) to glycerol and fatty acids and for this reason; they are in the class of hydrolases. These enzymes are carboxylesterases that catalyze hydrolysis in glycerides synthesis. A proposal for immobilization of these enzymes is use of magnetic nanostructures in biocatalysts transesterification reaction for producing biodiesel due to ease and rapid separation of immobilized enzyme, from a mixture reaction using an external magnetic field. The benefits of immobilized enzymes compared to free enzymes arise from their greater stability and ease of separation, which leads to significant savings in the overall cost of the process, provided that immobilization procedure is not very expensive, there is good recovery of enzyme activity, and operational stability of immobilized enzyme is sufficiently long. The use of immobilized enzymes allow retention of biocatalyst in reactor; high concentration of catalyst in reactor to intensify the process; control of microenvironment of enzyme; ease of recovery and reuse of catalyst, which reduces the costs of enzymes; possibility of being used in continuous systems. Using the technique of X-ray diffraction was confirmed magnetite phase in syntheses proposed: co-precipitation method and organic solvent. The functionalization of surface NP and SP with APTS confirmed by spectroscopy in infrared region, with bands of -NH2. The DLS technique proved the functionalization, the increase of hydrodynamic diameters NP-APTS samples and SP-APTS compared to NP and SP. The isoelectric point of SP and SP-APTS samples increased by 2.33 to 6.44. The immobilized derivative showed typical bands of amides. Immobilized lipases showed higher hydrodynamic diameters NP-APTS and SP-APTS. The results of hydrolytic activity of supported enzymes were satisfactory and SP-APTS-LPP showed higher activity. By thermogravimetric analysis, it was shown immobilization yield 22.86%. It was determined the pH optimum of immobilized lipase showed highest activity at pH 8 while the LPP free at pH 6.5. The optimum temperature measurements demonstrated that immobilized derivative is more active than free LPP at 50 ° C, favoring the use of support in industrial processes of biodiesel, which operates at high temperatures. In this context, the synthesis of porous magnetic support and immobilization of lipases showed excellent results for use in biocatalysis in transesterification reaction for biodiesel synthesis.
2

Příprava mikrobiálních metabolitů z odpadních surovin / Preparation of Microbial Metabolites from Waste Materials

Zichová, Miroslava January 2017 (has links)
In this thesis the use of waste materials for the microbial production of important metabolites is reported. The first part is focused on the use of waste paper (a lignocellulosic material) as a non-traditional source for the production of bioethanol. The second part is focused on the immobilization of cellulolytic enzymes, which are used for the hydrolysis of lignocellulosic materials. First, the waste paper (cardboard) was pre-treated using a blender and a vibratory mill. The pre-treated cardboard was used for the production of ethanol by the method of simultaneous saccharification and fermentation. This method was optimized with free cells of Saccharomyces cerevisiae. Then strains suitable for the immobilization were selected. Strains of S. cerevisiae and Pichia kudriavzevii were immobilized by encapsulation into the polyvinyl alcohol carrier and tested again for the ethanol production by simultaneous saccharification and fermentation. In the second part of the work a carrier from waste polyethylene terephthalate bottles was prepared and used for the immobilization of the cellulolytic complex. The basic characteristics were determined, such as optimal pH and optimal temperature, storage, operational and thermal stability, enzyme kinetics and the mode of action of the enzyme. Compared to two other commercial carriers this carrier showed to be suitable for the immobilization of the cellulolytic complex.
3

Fabrication de biocathodes flexibles pour biopiles enzymatiques implantables par procédés d’impression / Flexible biocathode manufacturing for implantable enzymatic biofuel cells by printing processes

Laaroussi, Awatef 13 April 2016 (has links)
Les biopiles enzymatiques, capables de convertir le glucose présent dans le fluide physiologique en électricité, sont une source d’alimentation pour les dispositifs implantables. Cependant, les faibles puissances délivrées ne permettent pas d’alimenter actuellement des organes artificiels implantables. Une nouvelle architecture de biocathode tirant profit des technologies d’impression a été testée en vue d’améliorer les performances des Biopiles implantables. Ce travail démontre la pertinence des procédés d’impression tels que le spray ultrasonique et l’héliogravure dans l’élaboration de biocathodes homogènes, fines et flexibles. Ainsi, des encres fonctionnelles, dont la formulation à base de nanotubes de carbone et de surfactant a été optimisée, ont pu être déposées sur un substrat flexible hydrophobe (feuilles de carbone). Les problèmes d’imprimabilité du substrat ont été surmontés et des couches actives flexibles ont été obtenues (épaisseur entre 5 et 10 µm). Enfin, une technique d’immobilisation non-covalente des laccases (via le pyrène adamantane) a été testée et un courant catalytique de l’ordre de 130 mA.cm-2 a été obtenu. / Enzymatic Biofuel Cells, capable of converting efficiently the glucose from extracellular fluid into electrical energy, are a power source for implantable devices. However, the power output generated by these cells is not sufficient to fulfill the energy required by implantable artificial organs. Therefore, a new packaging architecture design based on flexible materials derived from printing technologies has been explored in order to enhance the power output of this cell. This work demonstrates the relevance of printing processes such as ultrasonic spray and gravure to develop homogeneous, thin and flexible biocathodes. During this work, a carbon nanotubes / surfactant suspensions were deposited on a hydrophobic flexible substrate (carbon paper). Despite the poor printability of the substrate, flexible active layers were obtained (thickness between 5 and 10 µm). Finally, a non-covalent immobilization of laccases (via adamantane pyrene) was tested and a catalytic current of approximately 130 µA.cm-2 was obtained. mA.cm-2 was obtained.
4

Síntese e ativação superficial de novos suportes magnéticos para imobilização de enzimas

Kopp, Willian 16 October 2013 (has links)
Made available in DSpace on 2016-06-02T19:02:43Z (GMT). No. of bitstreams: 1 5706.pdf: 7869131 bytes, checksum: 3a35e736b3418ca357ef4fc2e657c0af (MD5) Previous issue date: 2013-10-16 / Universidade Federal de Minas Gerais / Enzymes are potent catalysts, but operationally fragile, expensive and soluble. Industrial applications of enzymes, often, are possible only using immobilized enzyme. Nowadays, various studies have been performed aiming to immobilize enzymes onto magnetic carriers, which allow the selective recovery of the derivative by applying an external magnetic field even in complex reaction media containing other suspended solids. There are many studies using magnetic carriers in enzymes immobilization procedures, however there are no commercially available enzymes immobilized onto magnetic materials. In these studies usually are used carriers with not ideal characteristics for applications in industrial processes. The present study aimed to develop new magnetic carriers and methods for immobilization of enzymes in these carriers, penicillin G acylase (PGA) and cellulases have been used as model enzymes. The thesis was divided into five parts, in the first part (Chapter 1) the state-of-art is presented. The second part (Chapter 2) describes the synthesis of magnetic carriers robust, cheap and with good characteristics for applications in bioprocesses. For this purpose were tested the synthesis of silica magnetic microparticles (SMMps) in water-in-oil micro-emulsion using sodium silicate as silica source and superparamagnetic iron oxide nanoparticles as magnetic core. Materials with good magnetic properties, high surface area and mesoporous structure were obtained. SMMps structure was characterized, it was possible to control the final structure of the material according to the synthesis conditions. In the third part of this study (Chapter 3) was evaluated a new concept in enzymes immobilization using magnetic materials. Magnetic tags were co-aggregated with PGA and cross-linked with glutaraldehyde, producing magnetic cross-linked enzymes aggregates (M-CLEAs). Several reaction conditions were tested producing M-CLEAs with different characteristics and strong response to external magnetic fields. Derivatives with good recovered activity and increased thermal and methanol 50% (v/v) stabilities were obtained. M-CLEAs presented superior performance, in comparison with the free enzyme, in penicillin G hydrolysis experiments, being reused for three reaction cycles without loss of activity. In the fourth part of this study (Chapter 4) the immobilization of the Trichoderma reesei cellulolytic complex onto 17 carriers using 60 different immobilization conditions was evaluated. Covalent methods to cellulases immobilization resulted in total loss of the enzymatic activity. The immobilization by adsorption allowed preserving a portion of the enzymatic activity, however, the enzyme was desorbed from the carrier with the increase in the ionic strength. The best results were achieved for adsorption in MANAE-agarose followed by cross-linking with glutaraldehyde. Hydrolysis experiments using insoluble substrates showed that it is possible to hydrolyze such substrates even using immobilized enzyme onto porous carriers. The derivative was reused for ten reaction cycles (hydrolysis of filter paper) saving more than 90% of its activity. Finally, in Chapter 5, the T. reesei cellulolytic complex was immobilized by adsorption onto SMMp activated with amino groups followed by glutaraldehyde cross-linking achieving good results in terms of recovered activity. / Enzimas são potentes catalisadores, porém frágeis operacionalmente, caras e solúveis. Aplicações industriais desses catalisadores, muitas vezes, são possíveis apenas com o uso de enzima imobilizada. Estudos indicam que o uso de suportes magnéticos para imobilizar enzimas pode permitir a recuperação seletiva do derivado através da aplicação de um campo magnético externo mesmo em meios complexos contendo outros sólidos em suspensão. Apesar de existirem muitos estudos empregando suportes magnéticos para imobilização de enzimas, não existem enzimas imobilizadas em materiais magnéticos disponíveis comercialmente. Nestes estudos geralmente são utilizados suportes magnéticos com características não ideais para aplicações em bioprocessos. O presente estudo teve como principal objetivo o desenvolvimento de novos suportes magnéticos e métodos para imobilização de enzimas nestes suportes, a enzima penicilina G acilase (PGA) e celulases foram utilizadas como modelo. O estudo foi dividido em cinco partes, no Capítulo 1 é apresentada uma introdução indicando o estado da arte. O Capítulo 2 apresenta o preparo de novos suportes magnéticos robustos, baratos e com características ótimas para aplicações em bioprocessos. Nesta etapa foi testada a síntese de micro-partículas magnéticas de sílica (SMMps) em micro-emulsão água-em-óleo, empregando silicato de sódio como fonte de sílica e nanopartículas superparamagnéticas de óxido de ferro como núcleo magnético. Os materiais obtidos apresentaram excelentes propriedades magnéticas, alta área de superfície e estrutura mesoporosa. A partir da caracterização físico-química e morfológica das SMMps foi possível controlar a estrutura final do material de acordo com as condições de síntese. No Capítulo 3 foi avaliado um novo conceito em imobilização de enzimas empregando materiais magnéticos. Neste estudo etiquetas magnéticas foram co-agregadas com PGA e entrecruzadas com glutaraldeído, gerando agregados enzimáticos entrecruzados com propriedades magnéticas (M-CLEAs). Várias condições reacionais foram testadas rendendo M-CLEAs com diferentes características e com resposta robusta a campos magnéticos externos. Derivados imobilizados com boa atividade recuperada e incremento na estabilidade térmica e frente a metanol 50% (v/v) foram obtidos. M-CLEAs apresentaram desempenho superior ao observado para a enzima livre em experimentos de hidrólise de penicilina G, sendo reutilizados por três ciclos reacionais sem perda de atividade. No Capítulo 4 foi avaliada a imobilização do complexo celulolítico de Trichoderma reesei em 17 suportes, empregando 60 diferentes condições de imobilização. Os experimentos de imobilização realizados empregando técnicas de imobilização por união covalente ocasionaram perda total de atividade enquanto métodos de imobilização por adsorção permitiram conservar boa atividade enzimática, porém a enzima dessorveu do suporte com o aumento na força iônica do meio. Os melhores resultados foram alcançados para adsorção em MANAE-agarose seguido de entrecruzamento com glutaraldeído. Experimentos de hidrólise de substratos insolúveis mostraram que é possível hidrolisar este tipo de substrato mesmo com enzima imobilizada em suportes porosos. O derivado foi reutilizado por dez ciclos (hidrólise de papel filtro) conservando mais de 90% de sua atividade. Por fim, no Capítulo 5, o complexo celulolítico de T. reesei foi imobilizado por adsorção em SMMp ativado com grupos amino seguido de entrecruzamento com glutaraldeído apresentando bons resultados em termos de atividade recuperada.
5

Construção, caracterização e aplicação analítica de microdispositivos enzimáticos

Cerqueira, Marcos Rodrigues Facchini 09 September 2016 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-03-21T18:21:21Z No. of bitstreams: 1 marcosrodriguesfacchinicerqueira.pdf: 6161892 bytes, checksum: a58d0d5ce0d0b333fd8a3b50155105e4 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-22T12:39:49Z (GMT) No. of bitstreams: 1 marcosrodriguesfacchinicerqueira.pdf: 6161892 bytes, checksum: a58d0d5ce0d0b333fd8a3b50155105e4 (MD5) / Made available in DSpace on 2017-03-22T12:39:49Z (GMT). No. of bitstreams: 1 marcosrodriguesfacchinicerqueira.pdf: 6161892 bytes, checksum: a58d0d5ce0d0b333fd8a3b50155105e4 (MD5) Previous issue date: 2016-09-09 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O foco deste trabalho foi o desenvolvimento e aplicação de microreatores enzimáticos, visando sua aplicação em sistemas de análise por injeção em fluxo. Em cima disso, dois substratos poliméricos foram utilizados para a avaliação de imobilização enzimática: um à base de poli (metil metacrilato) (PMMA) e outro em uma resina do éter diglicídico do bisfenol-A (BADGE). Uma impressora à laser de CO2 foi utilizada para confeccionar os dispositivos nas dimensões desejadas. Para o sucesso da imobilização, os sistemas foram previamente tratados com polietilenoimina (PEI) visando a introdução de grupamentos funcionais reativos na superfície dos materiais de partida. Num primeiro estudo, baseado na modificação de PMMA, a ativação do material foi conseguida após tratamento dos microcanais com PEI em meio de dimetilsulfóxido (DMSO). Já no segundo caso o tratamento com PEI envolveu a simples mistura mecânica dos materiais, objetivando a cura da resina empregada. Após a ativação dos materiais com PEI, as enzimas foram imobilizadas após passagem de uma mistura de glutaraldeído (um agente espaçador) e as enzimas. Dentre as enzimas estudadas estão a glicose oxidase (GOx), a ascorbato-oxidase (AAO), a catalase (CAT), a glutamato dehidrogenase (GDH), além de um sistema híbrido baseado na imobilização simultânea das enzimas glicose oxidase (GOx) e horseradish peroxidase (HPR). A caracterização dos sistemas desenvolvidos foi feita primordialmente por meio da espectroscopia Raman. Além disso, a aplicação de alguns dos sistemas frente a amostras reais e o cálculo de parâmetros cinéticos e operacionais dos microreatores confeccionados foram reralizados. Essas avaliações foram feitas baseadas em sistemas de detecção desenvolvidos no laboratório por técnicas eletroquímicas e por espectroscopia no visível. Como grande benefício dos sistemas desenvolvidos, podem ser destacados a velocidade e a simplicidade de implementação do processo de imobilização e operação. / The focus of this work is the development and application of enzymatic microreactors aiming their application through flow injection analysis systems. On top of that, two polymeric substrates were used for the evaluation of enzyme immobilization: one based on poly (methyl methacrylate) (PMMA) and another baed on a bisphenol-A diglycidyl ether resin (BADGE). A CO2 laser printer was used to fabricate the devices at the desired dimensions. For the success of the immobilization systems have been pretreated with polyethyleneimine (PEI) in order to introduce reactive functional groups on the surface of the starting materials. In a first study, based on PMMA modification, the activation of the material was achieved after treating microchannels with PEI in dimethylsulfoxide (DMSO). In the second case, treatment with PEI involved simply a mechanical mixture of the two materials, in order to cure the resin. After activation of materials with PEI, the enzymes were immobilized after passage of a mixture of glutaraldehyde (a spacer agent) and enzymes. Among the enzymes studied are glucose oxidase (GOx), ascorbate oxidase (AAO), catalase (CAT), dehydrogenase glutamate (GDH), and a hybrid system based on the simultaneous immobilization of the enzymes glucose oxidase (GOx) and horseradish peroxidase (HPR). The characterization of the developed systems was primarily done by Raman spectroscopy. Moreover, application of some of the proposed systems to real samples and calculation of kinetic and operational parameters are presented during the study. These evaluations were made with detection systems based on electrochemical and visible spectroscopy techniques, all developed at the laboratory. One great benefit of the developed systems, are the speed and simplicity of implementation the immobilization process and operation of the devices.

Page generated in 0.124 seconds