• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal Bimorph Micro-Cantilever Based Nano-Calorimeter for Sensing of Energetic Materials

Kang, Seokwon 2012 May 1900 (has links)
The objective of this study is to develop a robust portable nano-calorimeter sensor for detection of energetic materials, primarily explosives, combustible materials and propellants. A micro-cantilever sensor array is actuated thermally using bi-morph structure consisting of gold (Au: 400 nm) and silicon nitride (Si3N4: 600 nm) thin film layers of sub-micron thickness. An array of micro-heaters is integrated with the microcantilevers at their base. On electrically activating the micro-heaters at different actuation currents the microcantilevers undergo thermo-mechanical deformation, due to differential coefficient of thermal expansion. This deformation is tracked by monitoring the reflected ray from a laser illuminating the individual microcantilevers (i.e., using the optical lever principle). In the presence of explosive vapors, the change in bending response of microcantilever is affected by the induced thermal stresses arising from temperature changes due to adsorption and combustion reactions (catalyzed by the gold surface). A parametric study was performed for investigating the optimum values by varying the thickness and length in parallel with the heater power since the sensor sensitivity is enhanced by the optimum geometry as well as operating conditions for the sensor (e.g., temperature distribution within the microcantilever, power supply, concentration of the analyte, etc.). Also, for the geometry present in this study the nano-coatings of high thermal conductivity materials (e.g., Carbon Nanotubes: CNTs) over the microcantilever surface enables maximizing the thermally induced stress, which results in the enhancement of sensor sensitivity. For this purpose, CNTs are synthesized by post-growth method over the metal (e.g., Palladium Chloride: PdCl2) catalyst arrays pre-deposited by Dip-Pen Nanolithography (DPN) technique. The threshold current for differential actuation of the microcantilevers is correlated with the catalytic activity of a particular explosive (combustible vapor) over the metal (Au) catalysts and the corresponding vapor pressure. Numerical modeling is also explored to study the variation of temperature, species concentration and deflection of individual microcantilevers as a function of actuation current. Joule-heating in the resistive heating elements was coupled with the gaseous combustion at the heated surface to obtain the temperature profile and therefore the deflection of a microcantilever by calculating the thermally induced stress and strain relationship. The sensitivity of the threshold current of the sensor that is used for the specific detection and identification of individual explosives samples - is predicted to depend on the chemical kinetics and the vapor pressure. The simulation results showed similar trends with the experimental results for monitoring the bending response of the microcantilever sensors to explosive vapors (e.g., Acetone and 2-Propanol) as a function of the actuation current.
2

Analysis of the mechanical behavior of single wall carbon nanotubes by a modified molecular structural mechanics model incorporating an advanced chemical force field

Eberhardt, Oliver, Wallmersperger, Thomas 13 August 2020 (has links)
The outstanding properties of carbon nanotubes (CNTs) keep attracting the attention of researchers from different fields. CNTs are promising candidates for applications e.g. in lightweight construction but also in electronics, medicine and many more. The basis for the realization of the manifold applications is a detailed knowledge of the material properties of the carbon nanotubes. In particular for applications in lightweight constructions or in composites, the knowledge of the mechanical behavior of the CNTs is of vital interest. Hence, a lot of effort is put into the experimental and theoretical determination of the mechanical material properties of CNTs. Due to their small size, special techniques have to be applied. In this research, a modified molecular structural mechanics model for the numerical determination of the mechanical behavior of carbon nanotubes is presented. It uses an advanced approach for the geometrical representation of the CNT structure while the covalent bonds in the CNTs are represented by beam elements. Furthermore, the model is specifically designed to overcome major drawbacks in existing molecular structural mechanics models. This includes energetic consistency with the underlying chemical force field. The model is developed further to enable the application of a more advanced chemical force field representation. The developed model is able to predict, inter alia, the lateral and radial stiffness properties of the CNTs. The results for the lateral stiffness are given and discussed in order to emphasize the progress made with the presented approach.
3

Využití nanotechnologií pro betony ultravysokých pevností / The use of nanotechnology for ultra-high strength concretes

Šindelek, David January 2018 (has links)
This diploma thesis deals with the concept of use of nanotechnology for cement composites and UHPC. In the theoretical part of this diploma thesis there are theoretical principles described for successful design of high performance concrete and characteristics of main feedstock and its production. Furthermore, there is a focus on nanoparticles, especially the ones with carbon base in the form of carbon nanotubes CNT, in addition to that, graphenes GN that are new on the market, moreover, graphene oxide GO and its application in cement composites to mechanical characteristics and its durability. The first part of the practical part devotes in trying to find out an optimal parameter for ultrasonic mix with a suitable surface active substance of three graphenes. The other two parts of the practical part are about influence of graphenes on mechanical characteristics, cement paste microstructure, and application in the mix of concrete C 35/45 and UHPC
4

Analysis Of Multiwalled Carbon Nanotube Agglomerate Dispersion In Polymer Melts

Kasaliwal, Gaurav 15 July 2011 (has links)
For the commercial success of polymer - multiwalled carbon nanotube (MWNT) composites the production of these materials on industrial scale by melt processing is of significant importance. The complete dispersion of primary MWNT agglomerates in a polymer melt is difficult to achieve, making it an important and challenging technological problem. Hence, it is necessary to understand the process of MWNT agglomerate dispersion in a polymer melt. Based on an intensive literature research on mechanisms and influencing factors on dispersion of other agglomerated nanostructured fillers (e.g. carbon black), the main dispersion steps were evaluated and investigated concerning the agglomerated MWNT.Consequently, systematic investigations were performed to study the effect of the melt infiltration on MWNT agglomerate dispersion and to analyse the corresponding main dispersion mechanisms, namely rupture and erosion. The states of MWNT agglomerate dispersion were assessed by quantifying the agglomerate area ratio and particle size distribution using image analysis of optical transmission micrographs. Additionally, the composite’s electrical resistivity was determined. In the prevailing study, polycarbonates (PC) varying in molecular weight were used to produce composites containing 1 wt% MWNT (Baytubes C150HP) as model systems and a discontinuous microcompounder was applied as melt mixing device. The agglomerate structure of the used MWNT material made them especially suitable for the reported investigations. The step of melt infiltration into the primary nanotube agglomerates plays a crucial role for their dispersion in the PC melt. During melt mixing when low shear rates were applied, better state of MWNT dispersion was obtained in high viscosity matrices because applied shear stresses were high. On the contrary, if high shear rates were applied, similar states of MWNT dispersion were obtained in low and high viscosity matrices although significantly lower shear stresses were applied in the low viscosity matrix as compared to the high viscosity matrix. The results indicate that if the applied shear stress values are compared, with increasing matrix viscosity the agglomerate dispersion gets worsen. This is attributed to the fact that low viscosity matrices can infiltrate relatively faster than high viscosity matrices into the agglomerate making them weaker and reducing the agglomerate strength. Thus, at sufficient shear rates MWNT agglomerates disperse relatively faster in low viscosity matrix. This illustrates a balance between the counteracting effects of viscosity on agglomerate infiltration and agglomerate dispersion. Additionally, the effect of matrix molecular weight on the size of un-dispersed MWNT agglomerates was investigated. Under similar conditions of applied shear stress, the composites based on low molecular weight matrix showed smaller sized un-dispersed primary agglomerates as compared to composites with higher molecular weight matrices. This again highlights the role of matrix infiltration as the first step of dispersion. Following the step of melt infiltration, agglomerate size gets reduced due to the dispersion mechanisms. To analyse the corresponding contributions of different dispersion mechanisms (rupture and erosion), the kinetics of MWNT agglomerate dispersion was investigated. If high mixing speeds are employed dispersion is quite fast and needs less time as compared to low mixing speed. A model is proposed to estimate the fractions of rupture and erosion mechanisms during agglomerate dispersion based on the kinetic study in the discontinuous mixer. Under the employed experimental conditions, at high mixing speeds, the dispersion was found to be governed by rupture dominant mechanism, whereas at low mixing speeds the dispersion was controlled by both mechanisms. As far as electrical resistivity is concerned, for a given content of MWNT as the state of dispersion improves, the resistivity values decrease significantly but only up to a plateau value. The composites produced using low viscosity matrices have lower resistivity values as compared to high viscosity matrices. Additionally, composites were prepared using additives, whereas the additives were found to be useful for improving filler dispersion and electrical conductivity.
5

Elaboration de matériaux composites à matrice métallique (Cu-NTC) ayant des propriétés électriques améliorées pour application filaire. / Fabrication of metal matrix composite materials (Cu-CNT) with enhanced electrical properties for wired applications

Vallet, Guy-Marie 12 December 2014 (has links)
Le remplacement des systèmes de distribution d’énergie actuels dans les avions (pneumatiques, hydrauliques, mécaniques et électriques) par des systèmes 100% électriques est un enjeu majeur dans le cadre du projet de l’avion « plus électrique ». Le processus d’électrification de l’avion conduit à une augmentation de la puissance embarquée à bord des aéronefs, et par conséquent à une augmentation de la masse du réseau filaire. Afin de pallier à cette augmentation, un nouveau matériau composite possédant des propriétés électriques supérieures à celle du cuivre a été développé dans le but d’augmenter la capacité de courant admissible dans le conducteur à section constante. Ce travail de thèse présente le procédé d’élaboration du matériau composite cuivre-nanotubes de carbone développé ainsi que les techniques de caractérisation utilisées et les résultats associés. Différents paramètres tels que la qualité de la dispersion des renforts dans la matrice, le type de nanotubes de carbone utilisés (multi-parois vs mono-paroi), la nature de l’interface créée entre le cuivre et les renforts (mécanique vs chimique) ainsi que les techniques de mise en forme du matériau (pressage uni-axial à chaud, extrusion à chaud) et de post-traitements (recuit, laminage à chaud) ont été étudiés afin d’obtenir des propriétés physiques optimales. Il en résulte une augmentation des propriétés thermiques (+6,8% pour la conductivité thermique), mécaniques (+32% pour la dureté Vickers) et également électriques - pour la première fois observée- (+3,4 % pour la conductivité électrique) et ce en comparaison avec à une matrice de cuivre pur. / The substitution of the current energy chains in aircrafts (pneumatic, hydraulic, mechanical and electrical) by a 100% electrical chain is a major issue in the field of the “more electric” aircraft. The electrification process leads to an increase of the inboard power of aircrafts, and therefore to an increase of the wired network weight. To counterbalance this increase of mass, a new composite material with higher electrical properties that copper should be considered, in order to increase the current density in the conductor at constant cross section. Several parameters have been studied such as the quality of the carbon nanotubes dispersion, the type of CNTs used (single-walled vs. multi walled), the interface between the matrix and the reinforcements (mechanical vs. chemical), the shaping of material (uni-axial hot pressing, hot extrusion process) and the post treatments processes (heat treatment, hot lamination process). An enhancement of the thermal properties (+ 6.8% of thermal conductivity), the mechanical properties (+32% of Vickers hardness) and for the first time an increase of the electrical properties (+3.4 % for the electrical conductivity) have been observed in comparison with pure copper.
6

Elasticity And Structural Phase Transitions Of Nanoscale Objects

Mogurampelly, Santosh 09 1900 (has links) (PDF)
Elastic properties of carbon nanotubes (CNT), boron nitride nanotubes (BNNT), double stranded DNA (dsDNA), paranemic-juxtapose crossover (PX-JX) DNA and dendrimer bound DNA are discussed in this thesis. Structural phase transitions of nucleic acids induced by external force, carbon nanotubes and graphene substrate are also studied extensively. Electrostatic interactions have a strong effect on the elastic properties of BNNTs due to large partial atomic charges on boron and nitrogen atoms. We have computed Young’s modulus (Y ) and shear modulus (G) of BNNT and CNT as a function of the nanotube radius and partial atomic charges on boron and nitrogen atoms using molecular mechanics calculation. Our calculation shows that Young’s modulus of BNNTs increases with increase in magnitude of the partial atomic charges on B and N atoms and can be larger than the Young’s modulus of CNTs of same radius. Shear modulus, on the other hand depends weakly on the magnitude of partial atomic charges and is always less than the shear modulus of the CNT. The values obtained for Young’s modulus and shear modulus are in excellent agreement with the available experimental results. We also study the elasticity of dsDNA using equilibrium fluctuation methods as well as nonequilibrium stretching simulations. The results obtained from both methods quantitatively agree with each other. The end-to-end length distribution P(ρ) and angle distribution P(θ) of the dsDNA has a Gaussian form which gives stretch modulus (γ1) to be 708 pN and persistence length (Lp) to be 42 nm, respectively. When dsDNA is stretched along its helix axis, it undergoes a large conformational change and elongates about 1.7 times its initial contour length at a critical force. Applying a force perpendicular to the DNA helix axis, dsDNA gets unzipped and separated into two single-stranded DNA (ssDNA). DNA unzipping is a fundamental process in DNA replication. As the force at one end of the DNA is increased the DNA starts melting above a critical force depending on the pulling direction. The critical force fm , at which dsDNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the dsDNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base-pairs. Similar force-extension curve has also been observed when crossover DNA molecules are stretched along the helix axis. In the presence of mono-valent Na+ counterions, we find that the stretch modulus (γ1 ) of the paranemic crossover (PX) and its topoisomer juxtapose (JX) DNA structure is significantly higher (30 %) compared to normal B-DNA of the same sequence and length. When the DNA motif is surrounded by a solvent of divalent Mg2+ counterions, we find an enhanced rigidity compared to in Na+ environment due to the electrostatic screening effects arising from the divalent nature of Mg2+ counterions. This is the first direct determination of the mechanical strength of these crossover motifs which can be useful for the design of suitable DNA motifs for DNA based nanostructures and nanomechanical devices with improved structural rigidity. Negatively charged DNA can be compacted by positively charged dendrimer and the degree of compaction is a delicate balance between the strength of the electrostatic interaction and the elasticity of DNA. When the dsDNA is compacted by dendrimer, the stretch modulus, γ1 and persistence length, Lp decreases dramatically due to backbone charge neutralization of dsDNA by dendrimer. We also study the effect of CNT and graphene substrate on the elastic as well as adsorption properties of small interfering RNA (siRNA) and dsDNA. Our results show that siRNA strongly binds to CNT and graphene surface via unzipping its base-pairs and the propensity of unzipping increases with the increase in the diameter of the CNTs and is maximum on graphene. The unzipping and subsequent wrapping events are initiated and driven by van der Waals interactions between the aromatic rings of siRNA nucleobases and the CNT/graphene surface. However, dsDNA of the same sequence undergoes much less unzipping and wrapping on the CNT/graphene due to smaller interaction energy of thymidine of dsDNA with the CNT/graphene compared to that of uridine of siRNA. Unzipping probability distributions fitted to single exponential function give unzipping time (τ) of the order of few nanoseconds which decrease exponentially with temperature. From the temperature variation of unzipping time we estimate the free energy barrier to unzipping. We have also investigated the binding of siRNA to CNT by translocating siRNA inside CNT and find that siRNA spontaneously translocates inside CNT of various diameters and chiralities. Free en- ergy profiles show that siRNA gains free energy while translocating inside CNT and the barrier for siRNA exit from CNT ranges from 40 to 110 kcal/mol depending on CNT chirality and salt concentration. The translocation time τ decreases with the increase of CNT diameter having a critical diameter of 24 A for the translocation. After the optimal binding of siRNA to CNT/graphene, the complex is very stable which can serve as siRNA delivery agent for biomedical applications. Since siRNA has to undergo unwinding process in the presence of RNA-induced silencing complex, our proposed delivery mechanism by single wall CNT possesses potential advantages in achieving RNA interference (RNAi).
7

Machine Learning Potentials - State of the research and potential applications for carbon nanostructures

Rothe, Tom 13 November 2019 (has links)
Machine Learning interatomic potentials (ML-IAP) are currently the most promising Non-empirical IAPs for molecular dynamic (MD) simulations. They use Machine Learning (ML) methods to fit the potential energy surface (PES) with large reference datasets of the atomic configurations and their corresponding properties. Promising near quantum mechanical accuracy while being orders of magnitudes faster than first principle methods, ML-IAPs are the new “hot topic” in material science research. Unfortunately, most of the available publications require advanced knowledge about ML methods and IAPs, making them hard to understand for beginners and outsiders. This work serves as a plain introduction, providing all the required knowledge about IAPs, ML, and ML-IAPs from the beginning and giving an overview of the most relevant approaches and concepts for building those potentials. Exemplary a gaussian approximation potential (GAP) for amorphous carbon is used to simulate the defect induced deformation of carbon nanotubes. Comparing the results with published density-functional tight-binding (DFTB) results and own Empirical IAP MD-simulations shows that publicly available ML-IAP can already be used for simulation, being indeed faster than and nearly as accurate as first-principle methods. For the future two main challenges appear: First, the availability of ML-IAPs needs to be improved so that they can be easily used in the established MD codes just as the Empirical IAPs. Second, an accurate characterization of the bonds represented in the reference dataset is needed to assure that a potential is suitable for a special application, otherwise making it a 'black-box' method.:1 Introduction 2 Molecular Dynamics 2.1 Introduction to Molecular Dynamics 2.2 Interatomic Potentials 2.2.1 Development of PES 3 Machine Learning Methods 3.1 Types of Machine Learning 3.2 Building Machine Learning Models 3.2.1 Preprocessing 3.2.2 Learning 3.2.3 Evaluation 3.2.4 Prediction 4 Machine Learning for Molecular Dynamics Simulation 4.1 Definition 4.2 Machine Learning Potentials 4.2.1 Neural Network Potentials 4.2.2 Gaussian Approximation Potential 4.2.3 Spectral Neighbor Analysis Potential 4.2.4 Moment Tensor Potentials 4.3 Comparison of Machine Learning Potentials 4.4 Machine Learning Concepts 4.4.1 On the fly 4.4.2 De novo Exploration 4.4.3 PES-Learn 5 Simulation of defect induced deformation of CNTs 5.1 Methodology 5.2 Results and Discussion 6 Conclusion and Outlook 6.1 Conclusion 6.2 Outlook
8

Electrochemical Characterization Of Zinc-Rich Epoxy Primer-Cnt Nanocoating / Steel Interface In Co2 Saturated Under Different Flow Conditions

Valencia , Violeta 03 June 2015 (has links)
No description available.
9

Copper oxide atomic layer deposition on thermally pretreated multi-walled carbon nanotubes for interconnect applications

Melzer, Marcel, Waechtler, Thomas, Müller, Steve, Fiedler, Holger, Hermann, Sascha, Rodriguez, Raul D., Villabona, Alexander, Sendzik, Andrea, Mothes, Robert, Schulz, Stefan E., Zahn, Dietrich R.T., Hietschold, Michael, Lang, Heinrich, Gessner, Thomas January 2013 (has links)
The following is the accepted manuscript of the original article: Marcel Melzer, Thomas Waechtler, Steve Müller, Holger Fiedler, Sascha Hermann, Raul D. Rodriguez, Alexander Villabona, Andrea Sendzik, Robert Mothes, Stefan E. Schulz, Dietrich R.T. Zahn, Michael Hietschold, Heinrich Lang and Thomas Gessner “Copper oxide atomic layer deposition on thermally pretreated multi-walled carbon nanotubes for interconnect applications”, Microelectron. Eng. 107, 223-228 (2013). Digital Object Identifier: 10.1016/j.mee.2012.10.026 Available via http://www.sciencedirect.com or http://dx.doi.org/10.1016/j.mee.2012.10.026 © 2013 Elsevier B.V. Carbon nanotubes (CNTs) are a highly promising material for future interconnects. It is expected that a decoration of the CNTs with Cu particles or also the filling of the interspaces between the CNTs with Cu can enhance the performance of CNT-based interconnects. The current work is therefore considered with thermal atomic layer deposition (ALD) of CuxO from the liquid Cu(I) β-diketonate precursor [(nBu3P)2Cu(acac)] and wet oxygen at 135°C. This paper focuses on different thermal in-situ pre-treatments of the CNTs with O2, H2O and wet O2 at temperatures up to 300°C prior to the ALD process. Analyses by transmission electron microscopy show that in most cases the CuxO forms particles on the multi-walled CNTs (MWCNTs). This behavior can be explained by the low affinity of Cu to form carbides. Nevertheless, also the formation of areas with rather layer-like growth was observed in case of an oxidation with wet O2 at 300°C. This growth mode indicates the partial destruction of the MWCNT surface. However, the damages introduced into the MWCNTs during the pre treatment are too low to be detected by Raman spectroscopy.

Page generated in 0.0659 seconds