Spelling suggestions: "subject:"carbon nanotubes."" "subject:"charbon nanotubes.""
411 |
Determining the interwall spacing in carbon nanotubes by using transmission electron microscopy / Undersökning av väggavstånden i kolnanorör med hjälp av transmissions-elektronmikroskopiTyborowski, Tobias January 2016 (has links)
The interwall spacing of multi-walled carbon nanotubes has an effect on their physical and chemical properties. Tubes with larger interwall spacing - compared to the spacing where the carbon atoms are in their natural distance to each other - are for instance expected to be mechanically less stable. Considering the MWCNT interwall spacing’s dependence on the tube size, three interesting previous studies with slightly different conclusions can be found. All of them conclude an increase of the interwall spacing with a decreasing tube size. We describe their analysis procedure, compare them to each other and to our own measured data. In the beginning of our analyses, we determine the expected inaccuracy for measured distances out of TEM images being up to 10 % and we show the impacts of the TEM’s defocus, a powerful setting in TEM imaging. Finally, we suppose that the interwall spacings are not as strongly varying as one previous study concludes, but our analyses are relatively in harmony with the two other studies. The interwall spacings from tubes with an inner diameter larger than 5 nm are relatively constant within the whole tube. Furthermore, it appears that the middle spacings (excluding the outer- and innermost ones) show values that are most consistent with the interlayer spacings of turbostratic graphite. In underfocused images, the outer- and innermost spacings tend to have values being slightly smaller than the middle ones from the same tube.
|
412 |
Poly(styrene)-b-Poly(dimethylsiloxane)-b- Poly(styrene)/Single Walled Carbon Nanotube Nanocomposites. Synthesis of Triblock Copolymer and Nanocomposite PreparationStubbs, Ian 16 December 2016 (has links)
Molecular weights of 2,000, 6,000 and 10,000 of silane functionalized atactic polystyrene (aPS) and α,ω-divinyl functionalized polydimethylsiloxane (PDMS) were prepared via living anionic polymerization and bulk anionic ring opening polymerization respectively. Functionalization of the homopolymers was confirmed by FT-IR and 1H-NMR spectroscopy and their molecular weights were determined via 1H-NMR end group analysis. A hydrosilylation reaction between the functionalized homopolymers of different molecular weights produced nine polystyrene-block-polydimethylsiloxane-block-polystyrene (aPS-b-PDMS-b-aPS) triblock copolymers. Field emission scanning electron microscopy observations revealed the copolymers self-assemble into supramolecular structures. Dynamic Light Scattering measurements show only small increase in the order of nanometers of its hydrodynamic radius as the individual molecular weights of the homopolymers were increased.
Nanocomposites of the copolymers were prepared by incorporating 1% of oxidized single walled carbon nanotubes (SWNTs) within the aPS-PDMS-aPS matrices via coagulation precipitation. Differential scanning calorimetry (DSC) thermal analysis shows the SWNT interacting with both aPS and PDMS constituting blocks. SWNTs interaction with aPS block either increases the polymer glass transition temperature (Tg) by restricting its segmental motion or decreases the Tg by a plasticization effect. Within the PDMS block the SWNTs act as nucleating sites accelerating the crystallization rate of the polymer. This is evident by the appearance of single and double melting endotherms in the DSC thermograms.
|
413 |
Toxicity evaluation and medical application of multi-walled carbon nanotubesZhou, Lulu January 2015 (has links)
Carbon nanotubes (CNTs) are of special interest to industry and they have been increasingly utilised as advanced nanovectors in drug/gene delivery systems. They possess significant advantages including high surface area, welldefined morphologies, unique optical property, superior mechanical strength and thermal conductivity. However, despite their unique and advanced physicochemical properties, the low compatibility of some of those materials [e.g. multiwalled CNTs (MWCNTs)] in most biological and chemical environments has also generated some serious health and environment concerns. Chemical functionalization broadens CNT applications, conferring new functions, and at the same time was found potentially altering toxicity. Although considerable experimental data related to functionalised CNT toxicity, at the molecular and cellular levels, have been reported, there is very limited information available for the corresponding mechanism involved (e.g. cell apoptosis, genotoxicity. The toxicity of carbon nanotubes has been confirmed on many cell lines including A549 (lung cancer cell line) and MRC-5 (lung fibroblasts). However, the sensitivity of each cell line in terms of cellular morphology, apoptosis and DNA damage are still unknown. In this report the different levels of cellular response to oxidative stress and phagocytosis have been investigated in A549, MCF-7 and MRC-5 cell lines to better understand the mechanisms of the toxicity pathway. siRNA as an ideal personalized therapeutics can specifically regulate gene expression, but efficient delivery of siRNA is difficult while it has been shown that MWCNTs protect siRNA, facilitate entry into cells. In this study, we comprehensively evaluated the in vitro cytotoxicity of pristine and functionalized (-OH, -COOH) multi-wall carbon nanotubes (MWCNTs), via cell viability test, reactive oxygen species (ROS) generation test, cell apoptosis and DNA mutation detection, to investigate the non-toxic dose and influence of functional group in A549, MCF-7 and MRC-5 cells exposed to 1-1000 μg/mL MWCNTs from 6 to 72 hours. In addition, 84 toxicity related genes have been detected to investigate the change of RNA regulation after treatment with MWCNTs. The research findings suggest that functionalized MWCNTs are more genotoxic compared to their pristine form, and the level of both dose and dispersion in the matrix used should be taken into consideration before applying further clinical applications of MWCNTs. Among all three cell lines, MCF-7 was the most sensitive to cell death and DNA damage induced by pristine carbon nanotubes. The majority of MCF-7 cell death was in necrotic. In A549 cells, apoptosis played a notable role in cytotoxicity. MRC-5 didn’t show significant cell loss or membrane damage, which might be explained by its low cell growth rate, notably however, a great reduction of the F-actin and attachment points was observed after treatment which indicates that MRC-5 cells are under very unhealthy condition and less attached to the bottom of flasks. Despite their toxicity, which is still being researched, carbon nanotubes have a great potential in clinical medicine. Thus, understanding the sensitivity of different cell lines could offer a more individualized approach for future treatment regimes. In regards to gene delivery, MWCNTs were found to be less toxic than chemical agents (positive control) without weakening the delivery efficiency, which proves that MWCNTs have a good potential in medicine area.
|
414 |
The Synthesis of Solid Supported Palladium Nanoparticles: Effective Catalysts for Batch and Continuous Cross Coupling ReactionsBrinkley, Kendra W 01 January 2015 (has links)
Catalysis is one of the pillars of the chemical industry. While the use of catalyst is typically recognized in the automobile industry, their impact is more widespread as; catalysts are used in the synthesis of 80% of the US commercial chemicals. Despite the improved selectivity provided by catalyst, process inefficiencies still threaten the sustainability of a number of synthesis methods, especially in the pharmaceutical industry. Recyclable solid supported catalysts offer a unique opportunity to address these inefficiencies. Such systems coupled with continuous synthesis techniques, have the potential to significantly reduce the waste to desired product ratio (E-factor) of the production techniques. This research focuses developing sustainable processes to synthesize organic molecules by using continuous synthesis methods. In doing so, solid supported metal catalyst systems were identified, developed, and implemented to assist in the formation of carbon-carbon bonds. Newly developed systems, which utilized metal nanoparticles, showed reactivity and recyclability, comparable to commercially available catalyst.
Nanoparticles are emerging as useful materials in a wide variety of applications including catalysis. These applications include pharmaceutical processes by which complex and useful organic molecules can be prepared. As such, an effective and scalable synthesis method is required for the preparation of nanoparticle catalysts with significant control of the particle size, uniform dispersion, and even distribution of nanoparticles when deposited on the surface of a solid support. This project describes the production of palladium nanoparticles on a variety of solid supports and the evaluation of these nanoparticles for cross coupling reactions.
This report highlights novel synthesis techniques used in the formation of palladium nanoparticles using traditional batch reactions. The procedures developed for the batch formation of palladium nanoparticles on different solid supports, such as graphene and carbon nanotubes, are initially described. The major drawbacks of these methods are discussed, including limited scalability, variation of nanoparticle characteristics from batch to batch, and technical challenges associated with efficient heating of samples.
Furthermore, the necessary conditions and critical parameters to convert the batch synthesis of solid supported palladium nanoparticles to a continuous flow process are presented. This strategy not only alleviates the challenges associated with the robust preparation of the material and the limitations of scalability, but also showcases a new continuous reactor capable of efficient and direct heating of the reaction mixture under microwave irradiation. This strategy was further used in the synthesis of zinc oxide nanoparticles. Particles synthesized using this strategy as well as traditional synthesis methods, were evaluated in the context industrially relevant applications.
|
415 |
CHARACTERIZATION OF ELECTROSPRAYED POLY(VINYLIDENE FLUORIDE)/CNT NANOCOMPOSITEAbdelsayed, Ihab Maher 01 January 2005 (has links)
PVDF, Poly(vinylidene fluoride), is a polymer that has been studied for over four decades due to its good electromechanical properties, stability, and durability in various environments. Currently, PVDF is the only commercially available piezoelectric polymer. PVDF is a polymorph, which indicates the presence of several crystalline phases such as α, β, γ, and δ-phase. Oriented β-phase PVDF exhibits ferroelectric properties and displays the largest piezoelectricity amongst the four phases, which makes it the most desirable phase. Preparing oriented β-phase PVDF is a multi-step process, which is cost intensive, due to the time, labor and energy utilized. The main goal of this work is to prepare oriented β-phase PVDF using the electrospraying technique in a one step process. During the electrospraying process a polymer jet is ejected. This jet disintegrates into droplets due to overwhelming surface tension, resulting in a sprayed coating on the collector substrate. Because of the combination of jet ejection and the high voltage applied between the needle tip and the substrate, the droplets can be stretched and the polymer chains can be oriented. Both the stretching and the high electric field are required for the transformation of α-phase to the oriented β-phase. This study proposes that by using the electrospraying technique it is possible to transform the α-phase to the β-phase in a one step process starting from solution. This research focuses on the processing and characterization of electrosprayed PVDF as well as electrosprayed PVDF/carbon nanotubes (PVDF/CNT) nanocomposites. The specific tasks are to determine the changes to the PVDF phases due to the electrospraying technique, and to determine the changes in the PVDF morphology due to the addition of carbon nanotubes to the polymer matrix.PVDF with two different molecular weights were electrosprayed using different solvents and parameters. Initial observations after electrospraying were that, high boiling point solvents resulted in the spraying of the solution and forming films, whereas a low boiling point volatile solvent such as acetone resulted in the spinning of the solution thus forming non-woven fiber mats. The thermal and electrical properties of the electrosprayed PVDF and PVDF/CNT composites are measured using several characterization techniques, including Modulated Differential Scanning Calorimetry (MDSC), Dielectric spectroscopy, Thermally Stimulated Current (TSC), Fourier Transform Infrared Spectroscopy (FT-IR), and X-Ray Diffraction (XRD). MDSC results show that electrosprayed PVDF has a lower melting point temperature than that of PVDF commercially available pellets. In addition, electrosprayed PVDF/CNT nanocomposites show a linear increase in the percentage of crystallinity with the increase of CNT concentration in the composite. Dielectric spectroscopy results indicate that by increasing the CNT concentration in the composite, the dielectric constant and the polymer conductivity increase.From the four characterizing techniques used, two of them, FT-IR and XRD, show that it is possible to transform α-phase to β-phase PVDF in a one-step process using electrospraying. The other two techniques, TSC and dielectric spectroscopy, show α-phase for the electrosprayed samples without CNT, and some β-phase formation with samples electrosprayed with CNT. These last two techniques; TSC and dielectric spectroscopy have results that differ from the FT-IR and XRD techniques. This contradiction may be a result of the small amounts of β-phase in the sample, which cannot be detected using these techniques. Another reason may be due to the difference in the probing levels between these techniques. XRD and FT-IR probe at the molecular level, whereas TSC and dielectric probe at a much larger scale, which may make it hard to detect small amounts of β-phase.
|
416 |
Design and Structure-Activity Relationship of Small Molecule C-terminal Binding Protein (CtBP) Inhibitors and Investigation of the Scope of Palladium Multi-Walled Carbon Nanotubes (Pd-MWCNT) Catalyst in C–H Activation ReactionsKorwar, Sudha 01 January 2016 (has links)
C-terminal binding proteins (CtBPs) are transcriptional co-repressors involved in developmental processes, and also implicated in a number of breast, ovarian, colon cancers, and resistance against cancer chemotherapy. CtBP is a validated novel potential anti-cancer target. In this project we sought to develop potent and selective small-molecule inhibitors of CtBP. Using a combination of classical medicinal chemistry and modern computational approaches, we designed a potent inhibitor HIPP (hydroxyimino-3-phenylpropanoic acid) that showed an IC50 of 0.24 μM against recombinant CtBP. Further elucidation of the structure-activity relationship (SAR) of HIPP led to the design of more potent inhibitors 3-Cl HIPP (CtBP IC50 = 0.17 μM) and 4-Cl HIPP (CtBP IC50 = 0.18 μM). These compounds also showed inhibition in HCT-116 colon cancer cells with GI50 values ~ 1-4 mM. The compounds showed no off-target toxicity against a closely related protein. This is a starting point for the development of CtBP inhibitors as anti-cancer therapeutics. The second part of this dissertation focuses on C–H activation chemistry. C–H activation is the most atom-economical method of introducing complexity into a molecule, even at late stages of drug/product development. We have used solid-supported palladium nanoparticle catalyst (Pd-MWCNT) to investigate the scope of C–H activation reactions it can catalyse. Pd-MWCNT was found to efficiently catalyse N-chelation directed C-H activation reactions – halogenations, oxygenations and arylations. The turn-over numbers for these reactions were significantly higher than that of the reported homogenous catalyst. The added advantages of reuse/recyclability of catalyst, low contamination of metal in the final product make this catalyst very attractive on an industrial scale. This work serves as a foundation for the further development of Pd-MWCNT catalyst in late-stage synthesis of drugs and/or diversification of products.
|
417 |
Synthèse de copolymères de type polymère semi-conducteur-bloc-polymère hydrosoluble : application à la dispersion de nanotubes de carbone / Synthesis of semiconducting-block-electrolyte copolymers : application in dispersion of carbon nanotubesBethani, Aikaterini 14 December 2012 (has links)
Cette thèse porte pour l'essentiel sur la synthèse de copolymères à blocs bien définis composés au moins d'un bloc polymère semi-conducteur et d'un segment hydrosoluble pour être utilisés comme agents dispersants de nanotubes de carbone (NTCs) dans des milieux aqueux. Des copolymères de différentes masses molaires ont été synthétisés en suivant des procédés de polymérisation sans métaux et l’influence de la fraction volumique de la partie hydrosoluble a été étudiée au regard de leur solubilité en milieux aqueux. La capacité de ces copolymères à s'organiser ou s'auto-assembler tant en solution qu'en film a été examinée. Enfin, des dispersions de NTCs avec ces copolymères ainsi que leurs films obtenus par différents types de dépôts ont été réalisés et caractérisés pour déterminer notamment leurs caractéristiques électro-optiques. / Our work focused on the synthesis of well-defined copolymers constituted with at least a conductive polymer segment along with hydrophilic moieties in order to disperse CNTs in aqueous media. Using metal free polymerizations, copolymers with different molecular weights were synthesized in order to study the influence of the hydrophilic part on these materials. Besides the self-assembly behavior of these copolymers, both in bulk and in solution, were addressed. This type of copolymers were successfully used to disperse both single and multi wall carbon nanotubes. Electrical and optical characteristics of the dispersions together with their films will also be discussed.
|
418 |
Modelování bioanorganických rozhraní / Modeling of bio-inorganic interfacesTrachta, Michal January 2016 (has links)
Dynamic atomistic description of bio-inorganic interfaces represents a challenging problem for contemporary computational chemistry. A detailed analysis of processes occurring on the interface between biomolecule and inorganic material can help our understanding of various processes, ranging from chromatography and protein separation to protein immobilization techniques and their effect on enzyme activity or protein conformational stability. High complexity of bio- inorganic interfaces prevents detailed investigation using accurate, but computationally demanding ab initio methods. Since reliable empirical potentials are not available for these systems, the aim of this work is to develop force fields based on ab initio data as well as a general methodology for parameterization of such force fields. Our potential fitting procedure was carried out in an automated fashion based on molecular dynamics simulation. The resulting potentials were applied for investigation of inorganic material's influence on polypeptide conformations.
|
419 |
Purification et fonctionnalisation d'échantillons de nanotubes de carbone mono-feuillets : efficacité et sélectivité des traitements chimiques / Purification and functionalization of single-walled carbon nanotube samples : efficiency and selectivity of the chemical treatmentsMercier, Guillaume 04 July 2012 (has links)
La mise en évidence des nanotubes de carbone mono-feuillets (SWCNTs) en 1993 par S. Iijima a été une des découvertes qui a marqué la recherche dans le domaine des nanos. L'étude de leurs propriétés a révélé qu'elles étaient supérieures à celles de matériaux déjà connus et a laissé entrevoir un champ très large d'applications potentielles. Les méthodes de synthèse actuelles permettent de produire des SWCNTs en grande quantité. Cependant, les échantillons de SWCNTs peuvent être hétérogènes tant au niveau de leur composition (impuretés carbonées et métaux catalytiques) qu'en ce qui concerne les caractéristiques des SWCNTs eux-mêmes. Des traitements post-synthèses sont donc indispensables pour améliorer les caractéristiques des échantillons. Dans ce travail, nous avons dans un premier temps mis en oeuvre une procédure de purification (multi-étape) couramment utilisée. En accord avec la littérature, l'optimisation des paramètres expérimentaux notamment en ce qui concerne le traitement d'oxydation n'a pas permis d'obtenir de bons rendements de purification et une sélectivité de réaction performante. Une méthode de purification alternative a été développée. Elle consiste essentiellement à un traitement thermique sous flux de dichlore. Elle a permis de diminuer significativement la proportion d'impuretés métalliques tout en préservant les nanotubes. Elle s'est également révélée efficace avec des échantillons produits selon différentes méthodes. L'autre difficulté majeure dans l'utilisation des nanotubes est leur processabilité. La modification de l'état de surface des nanotubes passe par la fonctionnalisation chimique. Pour cela, nous avons étudié le greffage de fonctions sondes / The discovery of single-walled carbon nanotubes (SWCNTs) in 1993 by S. Iijima has been one of the milestones of scientific research in the domain of nanos. The study of their properties has revealed that they were superior to those of materials already known and has let to foresee a field of numerous potential applications. The actual methods of synthesis enable to produce SWCNTs in large quantities. However, the SWCNT samples can be heterogeneous regarding both their composition (carbonaceous and metal impurities) and the features of the as-produced SWCNTs. Post-synthesis treatments are therefore indispensable to improve the characteristics of the samples. In this work, firstly we have carried out a standard multi-step purification procedure. In agreement with literature, the optimization of experimental parameters notably those used for the oxidation treatment did not permit us to obtain neither good yields of purification nor efficient selectivity of reaction. An alternative purification method has thus been developed. It consists mainly in a thermal treatment under a dichlore stream. It has enabled to significantly decrease the proportion of metallic impurities in the samples while preserving the nanotubes. It has also shown that this new purification process was efficient with samples produced by different methods. The other main difficulty in using nanotubes is their processability. Chemical functionalization is then needed to modify nanotube surface properties. In that case, we have studied the grafting of probe functions
|
420 |
Non-covalent functionalization of carbon nanostructures : a DFT study / Fonctionnalisation non covalente de structures nano-carbonées : une étude DFTHu, Tao 06 May 2013 (has links)
Le dopage non covalent de nanostructures carbonées par transfert de charge depuis/vers des molécules donneuses ou acceptrices (EDA) ou bien par des molécules d’acide sulfurique H2SO4, est considéré comme potentiellement intéressant pour de nombreuses applications. Parmi celles-ci on peut citer: capteur chimique, transistor à effet de champ, et d’autre l'électronique. Cependant, d'un point de vue théorique, on en sait peu au sujet de ces processus de transfert de charge par électrons ou par trous.Dans un premier temps, nous nous sommes intéressés à l’interaction entre des molécules d’acide sulfurique et des nanostructures modèles, car elles sont capables de doper des nanotubes, de s’intercaler dans le graphite et même d’aligner les tubes dans une phase nématique, ce qui pourrait mener à la création de matériaux composites à forte valeur ajoutée.Bien que certaines études théoriques DFT ont été menées récemment, leurs résultats restent source de confusion. Par exemple, même s’il est rapporté un transfert de charge entre une molécule de H2SO4 et un plan de graphène, tous nos efforts pour reproduire ces calculs ont été infructueux. Nous proposons dans ce travail de thèse, un mécanisme de réaction qui expliquent la "protonation" des parois du tube, tel que proposé dans la littérature. Enfin nous proposons un scénario possible pour une meilleure compréhension de la structuration à grande échelle des molécules d'acide autour de points d'ancrage, telles que des défauts, de la structure carbonée / Non-covalent doping of carbon nanostructures by charge transfer from/to donor/acceptor molecules (EDA) or by H2SO4 molecules, be it with holes or electrons, is usually thought as potentially interesting for many applications of carbon based nano-devices. However, from a theoretical point of view, little is known about such “charge transfer” processes.Employing first-principles method based on Density Functional Theory (DFT), we have studied in details, and proposed a model to rationalize, the interaction between a prototypical donor molecule the tetrathiafulvalene (TTF), a standard acceptor organic molecule, tetracyanoethylene (TCNE) and carbon nanostructures: graphene layer and SWNTs with various chiral indices. Main results concern structural and thermodynamic aspects including dispersion forces effects, and evidently electronic structure modifications of the nanostructures. Various adsorption modes and concentration effects have been investigated. At very low coverage values, we have reported a charge transfer between graphene and TCNE or TTF. Moreover, we have shown that the charge transfer can be enhanced by increasing the concentration of those two EDA molecules, as it has been demonstrated experimentally. Those results are beneficial for comprehending the nonchemical doping mechanism in graphene structure by means of charge transfers. Considering the interaction between these prototypical molecules and carbon nanotubes, we have found that charge transfers tend to decrease while the curvature of nanotube is increasing. Besides, a strong influence of the metallic/semi-conductor character of the SWNTs can be observed and be explained by the change of polarisability of the curved carboneous substrates. Additionally, we have studied the adsorption properties of sulfuric acid molecules, in its non-hydrated form, on carboneous nanostructures. Against the common believe, no charge transfer is observed in the H2SO4@graphene or H2SO4@CNTs cases, even at very high concentrations. Instead, in order to elucidate the origin of p-doping observed experimentally, we have proposed that molecule is responsible of the reversible doping. Besides we have shown that a proton transfer could cause the experimental phenomenon of crystallization of H2SO4 molecules on SWNT’s surface. Finally in such process, defects like vacancy are of first importance, since they could provide anchorage points for hydrogen atoms. The results of the present work will certainly help to understand the charge transfer and doping mechanism of carbon nanostructures by means of non-covalent functionalization, which is a promising method for their future applications
|
Page generated in 0.0689 seconds