• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 562
  • 247
  • 106
  • 89
  • 25
  • 20
  • 11
  • 8
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 1382
  • 1382
  • 248
  • 244
  • 168
  • 147
  • 144
  • 137
  • 127
  • 107
  • 104
  • 102
  • 102
  • 99
  • 97
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Graphene And Carbon Nanotubes : Field Induced Doping, Interaction With Nucleobases, Confined Water And Sensors

Das, Anindya 05 1900 (has links)
This thesis presents experimental and related theoretical studies of single layer graphene, bilayer graphene and single walled carbon nanotubes. The thesis is divided into three parts; the first part describes the phonon renormalization due to doping in two dimensional graphene and one dimensional carbon nanotubes. In the recent years, there is a tremendous interest both experimentally and theoretically, in the issues related to electron-phonon coupling in nanotubes and graphene. Theoretically, it is expected that the presence of Kohn anomalies in graphene and metallic nanotubes will result in significant changes in the self energy of phonons due to doping. In particular, with Fermi energy shift how the blockage of phonon decay (due to Pauli Exclusion Principle) into electron-hole excitations changes the phonon frequencies as well as its life time have been studied in details in the first part of the thesis. Since in graphene and metallic nanotubes, the momentum relaxation time of electrons is comparable to the phonon pulsation time, the phonon cannot be treated as a static perturbation and hence non-adiabatic effects are taken into account using time dependent perturbation theory. Electron-phonon coupling constant is also a key parameter to understand the mobility of carrier due to electron scattering by optical phonons at room temperature and limitation of the maximum current carrying capacity of graphene and nanotubes. All these parameters are determined in the first part of the thesis by performing in-situ transport and Raman measurements on graphene and nanotubes based field effect transistors. The second part of the thesis deals with the interaction of bio-molecules (nucleobases) with the nanotubes and graphene. The binding energies of various nucleobases with nanotubes and graphene have been calculated theoretically using quantum chemical and classical force field calculations, and experimentally from isothermal titration (micro) calorimetry. In this part we also present an experimental study on the dynamics of water confined inside the carbon nanotubes. Proton nuclear magnetic resonance studies have been used to probe the freezing and dynamics of the confined water inside 1.4 nm diameter single walled carbon nanotubes. We have observed that the confined water does not freeze up to 223K. The dynamics of confined water has been studied using pulsed field gradient technique. The decay of spin echo intensity as a function of gradient field shows characteristic features of water confined in unidimensional channels. From the decay profiles the mean squared displacement of water molecules is obtained for different diffusive times, showing an unambiguous evidence of single file diffusion of water molecules inside the nanotubes i.e mean squared displacement varying as square root of time. In the last part, we have developed carbon nanotube based vibration sensor and accelerometer to detect the vibrations of liquid and solid, respectively, using the property of voltage generation in nanotubes due to liquid flow.
382

Interfacial and Mechanical Properties of Carbon Nanotubes: A Force Spectroscopy Study

Poggi, Mark Andrew 22 September 2004 (has links)
Next generation polymer composites that utilize the high electrical conductivity and tensile strength of carbon nanotubes are of interest. To effectively disperse carbon nanotubes into polymers, a more fundamental understanding of the polymer/nanotube interface is needed. This requires the development of new analytical methods and techniques for measuring the adhesion between a single molecule and the sidewalls of carbon nanotubes. Atomic Force Microscopy is an integral tool in the characterization of materials on the nanoscale. The objectives of this research were to: 1) characterize the binding force between single molecules and the backbone of a single walled carbon nanotube (SWNT), and 2) measure and interpret the mechanical response of carbon-based nano-objects to compressive loads using an atomic force microscope. To identify chemical moieties that bind strongly to the sidewall of the nanotubes, two experimental approaches have been explored. In the first, force volume images of SWNT paper were obtained using gold-coated AFM tips functionalized with terminally substituted alkanethiols and para-substituted arylthiols. Analysis of these images enabled quantification of the adhesive interactions between the functionalized tip and the SWNT surface. The resultant adhesive forces were shown to be dependent upon surface topography, tip shape, and the terminal group on the alkanethiol. The mechanical response of several single- and multi-walled carbon nanotubes under compressive load was examined with an AFM. When the scanner, onto which the substrate has been mounted, was extended and retracted in a cyclic fashion, cantilever deflection, oscillation amplitude and resonant frequency were simultaneously monitored. By time-correlating cantilever resonance spectra, deflection and scanner motion, precise control over the length of nanotube in contact with the substrate, analogous to fly-fishing was achieved. This multi-parameter force spectroscopy method is applicable for testing the mechanical and interfacial properties of a wide range of nanoscale objects. This research has led to a clearer understanding of the chemistry at the nanotube/polymer interface, as well as the mechanical response of nanoscale materials. A new force spectroscopic tool, multi-parameter force spectroscopy, should be extremely helpful in characterizing the mechanical response of a myriad of nanoscale objects and enable nanoscale devices to become a reality.
383

Conformation And Charge Transpsort In Conducting Polymers, Carbon Nanotubes And Their Nanocomposites

Choudhury, Paramita Kar 05 1900 (has links) (PDF)
The main motivation in this thesis is to compare the conformation and charge transport in conducting polymers and carbon nanotubes (CNTs) and to investigate those physical properties in their combined form of nanocomposites. It is known that both conducting polymers and carbon nanotubes are intrinsically 1-dimensional systems which consist of delocalized π-electrons. However, the main difference between these is the fact that flexibility of conducting polymers can be varied depending on the extent of conjugation while CNTs are rigid. Hence a comparison of electronic properties as correlated to their morphology has been carried out and their individual role in nanocomposites is further studied. The thesis consists of 6 chapters and appendix. Chapter 1 consists of brief introduction of general properties of both conducting polymers, CNTs and their nanocomposites. Chapter 2 deals with the sample preparation and experimental techniques used for the work. Chapter 3 elaborates on the conformational / structural studies on the systems. Chapter 4 focuses on the transport measurements to study the electronic properties of the samples. Chapter 5 reveals the magnetic properties of these systems which can be applied in technological devices. And chapter 6 gives the conclusion and future directions of the work being done. Chapter 1: Nanocomposites represent a guest-host matrix consisting of easily processible functionalized conjugated polymer as host, incorporating carbon nanotubes as fillers with versatile electronic and magnetic properties, which provide a wide range of technological applications. The conformation, charge dynamics as well as magnetic properties of these conducting polymers and carbon nanotubes, and various aspects of transport mechanism and spin dynamics present in the nanocomposite matrix are studied and presented in a consistent framework. Chapter 2: The multiwall carbon nanotubes (MWNTs) are grown by thermal chemical vapor deposition (CVD). The MWNTs are dispersed in solution of conducting polymers by ultrasonication and then the suspension is cast on glass substrate and slowly dried by moderate heating. Once dried completely, the free-standing films of thickness 15-25 μm are peeled off the substrate for measurements. The MWNTs, above a certain concentration, form an interconnected network in the 3-dimensional polymer matrix, following percolation mechanism. The disorder is brought into the system mainly by bundling of tubes and bundle intersections. The morphology and conformation of the samples are studied by SEM, TEM and small angle X-ray scattering (SAXS) techniques. Chapter 3: Small angle X-ray scattering (SAXS) studies in polymeric systems are carried out to probe local nanoscale morphology at various length scales to show the correlation among conformation and assembly of chains. Small angle X-ray scattering (SAXS) studies are carried out in poly [2-methoxy5-(2’–ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) solution of varying conjugation lengths as well as different solvents. By increasing the extent of πconjugation from 30 to 100 %, the persistence length increases by a factor of three. Moreover, a pronounced second peak in the pair distribution function is observed in fully conjugated chain, at larger length scales which indicates that the chain segments tend to self-assemble as the conjugation along the chain increases. The chain assembly and aggregation are further studied for suspensions of MWNTs in polyethylene dioxythiophene-polystyrene (PEDOT-PSS) with aqueous medium and DMSO (dimethyl sulphoxide). The SAXS profile of MWNT dispersion in aqueous PEDOT-PSS clearly show rigid-rod feature of the individual nanotubes evident by the q-1 behavior at short ranges. The crossover from q-1 to q-2 in the longer range further suggest that the suspension consists of individual nanotubes, nanotubes bundles and aggregates that give rise to a 3-dimensonal meshwork of intersecting tubes and ropes. For the MWNT dispersion in PEDOT-PSS with DMSO, however, such q-1 behavior is absent; which evidently shows that the rods are not isolated in the solution and are rather agglomerated. How these conformations affect the electrical and magnetic properties of these systems are studied further in Chapter 4. Chapter 4: Transport mechanism in single wall carbon nanotubes (SWNT), MWNT pellets, and nanocomposite films of MWNT and PEDOT-PSS is studied. The positive and negative magnetoresistance (MR) data in various SWNT samples are analyzed by taking into account the electron-electron interaction (EEI) contribution, in addition to the weak localization (WL) regime. The contribution from EEI to the total MR is confirmed from the universal scaling of MC relation showing that EEI plays a significant role at higher fields and lower temperatures. Intrinsic parameters like inelastic scattering length extracted for barely metallic sample follows the T-3/4 dependence due to inelastic electron-electron scattering in the dirty limit. Conductivity and magnetoresistance (MR) measurements on nanocomposite films with varying MWNT content (0.03 - 3 %) are performed at a field range 0-11 Tesla, and temperature range 1.3–300 K. The temperature dependence of resistance above 4 K suggests a Coulomb-gap variable range hopping (CG-VRH) transport in the network. Alhough solely negative MR (~ 5-6 %) is observed for pristine MWNT pellets; the nanocomposite films show a combination of large negative MR (~ 80 %) at T < 4 K, and a comparatively weaker positive MR (~ 30 %) for T > 4 K. This suggest that there are two mechanism interplaying and dominant at different temperature regimes which can be explained by the mechanism of transport of the charge carriers of MWNT intervened by that of the polymer matrix. In conclusion how the individual properties of conducting polymer and carbon nanotubes contribute to the unique electronic and conformational properties in their nanocomposites is framed in this investigation. Chapter 5: Magnetic properties of the pristine MWNTs as well as metal nanowires of nickel, nickel-iron (NiFe), nickel-iron-cobalt (NiFeCo) encapsulated in the MWNTs are studied using superconducting quantum interference device (SQUID) magnetometer. A typical example of Ni nanowires encapsulated in MWNT (Ni-MWNT) is taken and the results are compared to other forms of nickel (bulk, nanorod cluster, nanowire) to see the effect of size, shape and environment on the magnetic kproperties. The saturation magnetization and coercivity for Ni-MWNTs are 1.0 emu/gm and 230 Oe. The temperature dependence of magnetization indicates superparamagnetic which is supported by the field-cooled and zero-field-cooled plots determining a blocking temperature ~ 300 K. These altered magnetic properties of Ni-MWNTs are mainly due to the contribution from carbon nanotube encapsulation. Both the shape and environment enhance the total magnetic anisotropy of encapsulated nanowires at least by a factor of four. The encapsulation of metal nanowires in MWNTs tunes the magnetic properties of the system widely, e.g. from diamagnetic (pristine MWNTs) to paramagnetic (Ni-MWNT) to ferromagnetic (NiFe-MWNT) and a combination of para and ferro (NiFeCo-MWNT). Chapter 6: The conclusions of the different works presented in the thesis are coherently summarized in this chapter. Thoughts for future directions are also summed up. Appendix A: Spin dynamics in conducting polymer PEDOT-PSS in its pristine, processed with DMSO and nanocomposite form (with carbon nanotubes) is studied using solid state nuclear magnetic resonance (NMR). Plots of proton spin lattice relaxation times vs. temperature at a fixed frequency 23.4 MHz are compared to study the effect of the external agents on the polymer dynamics.
384

Ultrafast Response And Time Resolved Spectroscopy Of Carbon Nanotubes, Semiconductors And Rare-Earth Titanates Using Femtosecond Laser Pulses

Kamaraju, N 09 1900 (has links) (PDF)
In this thesis, experimental studies are reported of ultrafast dynamics and third order optical nonlinear coefficients of carbon nanotubes, and time resolved coherent phonon dynamics of semiconductors and rare earth titanates. The thesis is divided into three parts. The first part presents (i) general introduction to theoretical background on nonlinear optical susceptibility and time resolved studies, and systems studied (chapter 1) and (ii) experimental techniques (chapter 2). The second part of the thesis deals with the measurements of third order nonlinear susceptibilities and ultrafast dynamics of single and double walled carbon nanotubes (chapter 3). The third part contains coherent phonon dynamics in semiconductors, Te (chapter 4), Bi2Te3 (chapter 5), and ZnTe (chapter 6) and spin-frustrated rare earth titanate insulators (chapter 7). Chapter 1: This chapter is a general introduction to the thesis. The chapter is divided into two parts: (i) light-matter interaction, and (ii) systems studied. Under light-matter interaction, we describe the required theoretical and conceptual background of nonlinear optical susceptibilities and time resolved carrier and phonon dynamics. In the next part, a brief summary of details of the systems studied, that include carbon nanotubes (single and double walled), semiconductors (Te, Bi2Te3 and ZnTe) and insulating spin-frustrated rare earth titanates (Gd2Ti2O7, Dy2Ti2O7 and Tb2Ti2O7), are presented. Chapter 2: Details of the ultrafast laser systems (femtosecond oscillator and amplifier), pulse width measurements and ultrafast experimental pump-probe and z-scan techniques, used in this thesis are given in this chapter. Chapter 3: Here the experimental results on the measurements of third order optical nonlinearity and ultrafast dynamics of single and double walled carbon nanotubes are presented. The chapter starts with a general overview of optical switching followed by known ultrafast dynamics and nonlinear studies on carbon nanotubes. In the next section, our theoretical modelling of nonlinear absorption and refraction in the limit of saturable absorption is described. The final two sections depict our results on single and double walled carbon nanotubes. These studies indicate that double walled carbon nanotubes are best candidates for ultrafast optical switching. Chapter 4: This chapter presents temperature and pump fluence dependent femtosecond time resolved reflectivity measurements on tellurium. The chapter starts with an overview of previous pump-probe reflectivity studies at room temperature on tellurium followed by our results. A totally symmetric A1 coherent phonon at 3.6 THz responsible for the oscillations in the reflectivity data is observed to be strongly positively chirped (i.e, phonon time period decreases at longer pump-probe delay times) with increasing photoexcited carrier density, more so at lower temperatures. We show for the first time that the temperature dependence of the coherent phonon frequency is anomalous (i.e, increasing with increasing temperature) at high photoexcited carrier density due to electron-phonon interaction. At the highest photoexcited carrier densities of ~ 1.4 x 1021cm-3 and the sample temperature of 3K, the lattice displacement of the coherent phonon mode is estimated to be as high as ~ 0.24 Å. Numerical simulations based on coupled effects of optical absorption and carrier diffusion reveal that the diffusion of carriers dominates the non-oscillatory electronic part of the time-resolved reflectivity. Finally, using the pump-probe experiments at low carrier density of 6 x 1018 cm-3, we separate the phonon anharmonicity to obtain the electron-phonon coupling contribution to the phonon frequency and linewidth. Chapter 5: This chapter begins with a introduction of previous ultrafast studies at room temperature on Bi2Te3 and then presents our results on the temperature dependent high pump fluence time resolved reflectivity measurements on Bi2Te3. The time resolved reflectivity data shows two coherently generated totally symmetric A1g modes at 1.85 THz and 3.6 THz at 296K which blue shift to 1.9 THz and 4.02 THz, respectively at 3K. At high photoexcited carrier density of ~ 1.7 x 1021cm-3, the phonon mode at 4.02 THz is two orders of magnitude higher positively chirped than the lower frequency mode at 1.9 THz. The chirp parameter, β is shown to vary inversely with temperature. The time evolution of these modes is studied using continuous wavelet transform of the time-resolved reflectivity data. The analysis shows that the build up time for the two coherent phonons is different. Chapter 6: This chapter starts with a general introduction on various as pects of ZnTe to be used in generation and detection of THz followed by our results on influence of carriers and sample temperature on coherent phonon and polariton generation in ZnTe. Combination of femtosecond Kerr, two photon absorption and impulsive stimulated Raman scattering experiments have been carried out to investigate the effect of pulse energy and crystal temperature on the generation of coherent polaritons and phonons in < 110 > cut ZnTe single crystals of three different resistivities. We demonstrate that the effect of two-photon induced free carriers on the creation of both the polaritons and phonons is largest at 4K where the free carrier lifetime is enhanced. Further, the temperature dependant impulsive stimulated Raman scattering on high and low purity ZnTe crystals allows us to unambiguously assign the phonon mode at 3.5 THz to the longitudinal acoustic mode at X-point in the Brillouin zone, LA(X) in contrast to the assignment as two-phonon process in earlier studies. Chapter 7: This chapter starts with an introduction on previous Raman studies on the pyrochlore systems accompanied by our results on the generation of coherent optical phonons in spin frustrated pyrochlore single crystals Dy2Ti2O7, Gd2Ti2O7 and Tb2Ti2O7 and their behavior as a function of sample temperature from 296K to 4K. At 4K, two coherent phonons are observed at 5.3 THz (5.0 THz) and ~ 9.3 THz (9.4 THz) for Dy2Ti2O7 (Gd2Ti2O7) whereas three coherent phonons are generated at ~ 4.8 THz, 8.6 THz and 9.6 THz for Tb2Ti2O7. In the case of spin-ice Dy2Ti2O7, a clear discontinuity is observed in the linewidths of both the coherent phonons as well as in the phase of low energy coherent phonon mode, indicating a subtle structural change as also suggested by Raman studies. In comparison, such changes are not seen in the coherent phonons of Gd2Ti2O7, and Tb2Ti2O7. Another important observation is the phase difference of ‘π’ between the modes in all the samples, thus suggesting that the driving forces behind the generation of these modes are different in nature unlike a purely impulsive or displacive mechanism. Chapter 8: This chapter summarizes our results reported in this thesis and gives future directions.
385

Optical emission spectroscopy of laser induced plasmas containing carbon and transitional metals.

Motaung, David Edmond. January 2008 (has links)
<p>The spectroscopic, SEM and Raman measurements on carbon nanotubes under the exact conditions of which OES analysis were made showed that at<br /> a pressure of 400 Torr and a flow rate of 200 sccm, the quality and quantity of single-walled carbon nanotubes was the highest.</p>
386

Optical emission spectroscopy of laser induced plasmas containing carbon and transitional metals.

Motaung, David Edmond. January 2008 (has links)
<p>The spectroscopic, SEM and Raman measurements on carbon nanotubes under the exact conditions of which OES analysis were made showed that at<br /> a pressure of 400 Torr and a flow rate of 200 sccm, the quality and quantity of single-walled carbon nanotubes was the highest.</p>
387

ELECTRICAL AND MECHANICAL PROPERTIES OF MWCNT FILLED CONDUCTIVE ADHESIVES ON LEAD FREE SURFACE FINISHED PCB's.

Mantena, Keerthi Varma 01 January 2009 (has links)
Electrically conductive adhesives (ECA) are an alternative to tin/lead solders for attaching Surface Mount Devices (SMD) in electronic assemblies. ECAs are mixtures of a polymer binder (for adhesion) and conductive filler (for electrical conductivity). They bring more conductivity, higher strength, less weight and longer durability than metal alloys. ECAs can offer numerous advantages such as fewer processing steps, lower processing temperature and fine pitch capability. Multi walled carbon nanotubes (MWCNT) were used as conductive fillers in this research because of their novel electronic and mechanical properties. The high aspect ratio of the nanotubes makes it possible to percolate at low loadings to obtain good electrical and mechanical properties. Replacing the metal filler with CNTs in the adhesive made the ECA light weight, corrosion resistant, reduced processing temperature, lead free, electrically conductive and high mechanical strength. The MWCNTs at different loadings were mixed with epoxy and epoxy: heloxy to form a composite mixture. Different loadings, additives and mixing methods were used to obtain good electrical and mechanical properties and pot life. Pressure dispensing, screen and stencil printing were the processing techniques used for making the samples. The volume resistivity, contact resistance, die shear and lap shear tests were conducted on different surface finished Printed Circuit Boards (PCB) like silver, tin and Electro less Nickel Immersion Gold (ENIG). The results are summarized and compared with traditional methods.
388

Oxide-coated vertically aligned carbon nanotube forests as thermal interface materials

Vasquez, Cristal Jeanette 27 August 2014 (has links)
Carbon nanotube (CNT) forests have outstanding thermal, electrical, and mechanical properties, which have generated significant interest as thermal interface materials (TIMs). Some drawbacks to using CNTs as TIMs include poor substrate adhesion, high interface resistances inhibiting thermal transport, and lack of electrical insulation in electronic component applications. It is thus useful to be able to modify CNTs to reduce their electrical conductivity while maintaining high thermal conductivity and interface conductance, and high mechanical compliance. A recent report suggests that nanoscale oxide coatings could be applied to CNTs in forests without changing the mechanical deformation behavior of the forests. Oxide coatings could also provide environmental stability as well as better adhesion to the substrate compared to pristine CNT forests. In this study, we investigated thermal and electrical resistance of CNT forests with an oxide coating. Low-pressure chemical vapor deposition (LPCVD) was used to produce CNTs on high-conductivity Si substrates. Plasma-enhanced atomic layer deposition (PALD) was used to deposit Al2O3 on individual CNTs in forests. This process was facilitated by O2 plasma pretreatment to functionalize the surface of the CNTs and nucleate oxide growth. Several analytical techniques were used to characterize the CNT-oxide composites, including scanning electron microscopy, Raman and X-ray photoelectron spectroscopy. Thermal conductivity and thermal interface resistance were measured using a modified photoacoustic technique. The oxide coating had no significant effect on the effective thermal conductivity of the forests, in contrast to expectations of increased phonon scattering. Electrical resistivity measurements were made and a threefold increase was observed for the oxide-coated forests. This approach could emerge as a promising route to create a viable TIM for thermally conductive and electrically insulating applications.
389

Scalable carbon nanotube growth and design of efficient catalysts for Fischer-Tropsch synthesis

Almkhelfe, Haider H. January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Placidus B. Amama / The continued depletion of fossil fuels and concomitant increase in greenhouse gases have encouraged worldwide research on alternative processes to produce clean fuel. Fischer-Tropsch synthesis (FTS) is a heterogeneous catalytic reaction that converts syngas (CO and H₂) to liquid hydrocarbons. FTS is a well-established route for producing clean liquid fuels. However, the broad product distribution and limited catalytic activity are restricting the development of FTS. The strong interactions between the active metal catalyst (Fe or Co) and support (Al₂O₃, SiO₂ and TiO₂) during post-synthesis treatments of the catalyst (such as calcination at ~500°C and reduction ~550°C) lead to formation of inactive and unreducible inert material like Fe₂SiO₄, CoAl₂O₄, Co₂SiO₄. The activity of FTS catalyst is negatively impacted by the presence of these inactive compounds. In our study, we demonstrate the use of a modified photo-Fenton process for the preparation of carbon nanotube (CNT)-supported Co and Fe catalysts that are characterized by small and well-dispersed catalyst particles on CNTs that require no further treatments. The process is facile, highly scalable, and involves the use of green catalyst precursors and an oxidant. The reaction kinetic results show high CO conversion (85%), selectivity for liquid hydrocarbons and stability. Further, a gaseous product mixture from FTS (C1-C4) was utilized as an efficient feedstock for the growth of high-quality, well-aligned single-wall carbon nanotube (SWCNT) carpets of millimeter-scale heights on Fe and (sub) millimeter-scale heights on Co catalysts via chemical vapor deposition (CVD). Although SWCNT carpets were grown over a wide temperature range (between 650 and 850°C), growth conducted at optimal temperatures for Co (850°C) and Fe (750°C) yielded predominantly SWCNTs that are straight, clean, and with sidewalls that are largely free of amorphous carbon. Also, low-temperature CVD growth of CNT carpets from Fe and Fe–Cu catalysts using a gaseous product mixture from FTS as a superior carbon feedstock is demonstrated. The efficiency of the growth process is evidenced by the highly dense, vertically aligned CNT structures from both Fe and Fe–Cu catalysts even at temperatures as low as 400°C–a record low growth temperature for CNT carpets obtained via conventional thermal CVD. The use of FTS-GP facilitates low-temperature growth of CNT carpets on traditional (alumina film) and nontraditional substrates (aluminum foil) and has the potential of enhancing CNT quality, catalyst lifetime, and scalability. We demonstrate growth of SWCNT carpets with diameter distributions that are smaller than SWCNTs in conventional carpets using a CVD process that utilizes the product gaseous mixture from Fischer-Tropsch synthesis (FTS-GP). The high-resolution transmission electron microscopic (HR-TEM) and Raman spectroscopic results reveal that the use of a high melting point metal as a catalyst promoter in combination with either Co (1.5 nm ± 0.7) at 850ºC or Fe (1.9 nm ± 0.8) at 750ºC yields smaller-diameter SWCNT arrays with narrow diameter distributions. Scalable synthesis of carbon nanotubes (CNTs), carbon nanofibers (CNFs), and onion like carbon (OLC) in a batch reactor using supercritical fluids as a reaction media is demonstrated. The process utilizes toluene, ethanol, or butanol as a carbon precursor in combination with ferrocene that serves as a catalyst precursor and a secondary carbon source. The use of supercritical fluids for growth does not only provide a route for selective growth of a variety of carbon nanomaterials, but also provides a unique one-step approach that is free of aggressive acid treatment for synthesis of CNT-supported metallic nanoparticle composites for catalysis and energy storage applications.
390

Nanodevices of Graphene, Carbon Nanotubes and Flow Behaviour of Graphene Oxide Gel

Vasu, Kalangi Siddeswara January 2014 (has links) (PDF)
In the last three decades carbon nanomaterials such as fullerenes, carbon nanotubes and graphene have attracted significant attention from the scientific community due to their unique electronic, optical, thermal, mechanical and chemical properties. Among them carbon nanotubes and graphene have been used in numerous applications for future nanoelectronics, biochemical sensors and energy harvesting technologies due to their unique properties including exceptionally high electronic conductivity and mechanical strength. Carbon nanotubes are cylindrical structures and considered to be large mesoscopic molecules with high aspect ratios. Graphene is a single atomic layer of crystalline graphite and prepared by stripping layers off the graphite using Scotch tape. Apart from this scotch tape method, chemical ex-foliation and reduction of graphite oxide produces large amounts of reduced graphene oxide which has similar properties as graphene. This thesis reports on the biosensors made of reduced graphene oxide and single walled carbon nanotubes based on their electronic properties. We also demonstrate the changes in electronic properties of single walled carbon nanotubes due to interactions with dendrimer molecules. Finally, the yielding and flow behaviour of graphene oxide nematic gel are discussed. Chapter 1 gives a general introduction about the preparation and characterization along with the electronic properties of the systems studied in this thesis, namely graphene oxide, reduced graphene oxide and single walled carbon nanotubes. We have also discussed about the experimental techniques such as Raman, UV-visibe and infrared spectroscopy, atomic force and scanning tunneling microscopy and different types of rheometers used in this thesis work. In Chapter 2, we discuss top-gated field effect transistor characteristics of the devices made of reduced graphene oxide monolayer by dielectrophoresis. Raman spectrum of RGO flakes shows a single 2D band at 2687 cm 1, characteristic of a single layer graphene. The two probe current - voltage measurements of RGO flakes, deposited in between the patterned electrodes using a.c. dielectrophoresis show ohmic behavior with a resistance of 37kΩ. The temperature dependence of the resistance (R) of RGO measured between temperatures 305K to 393K yields the temperature coefficient of resistance of -9.5 10 4/K. Ambipolar nature of graphene flakes is observed upto a doping level of 6 1012/cm2 and carrier mobility of 50cm2/V-sec. The source - drain current characteristics shows a tendency of current saturation at high source - drain voltage which is analyzed quantitatively by a diffusive transport model. In Chapter 3, We demonstrate the detection of glucose molecules by using reduced graphene oxide (RGO) and aminophenylboronic acid (APBA) complex with detection limit of 5 nM. APBA functionalized RGO (APBA-RGO) flakes, prepared by stirring the aqueous GO suspension in the presence of APBA molecules at 100◦C, were used as conducting channel in our field effect transistor (FET) devices. The APBA-RGO complex formation was confirmed by atomic force microscopy (AFM), x - ray photoelectron, Raman and UV-visible spectroscopic studies. Detection of glucose molecules was carried out by monitoring the changes in electrical conductance of the APBA-RGO flake in the FET device. FET devices made of non-covelently functionalized APBA-RGO complex (nc-APBA-RGO) exhibited enhanced sensitivity over the devices made of covalently functionalized APBA-RGO complex (c-APBA-RGO). Change in normalized conductance in the FET devices made of nc-APBA-RGO flakes ( 85%) is 4 times more than that of in the devices made of c-APBA-RGO flakes in response to aqueous glucose solution with different concentrations. Specificity of APBA-RGO complex to glucose was proved from the observation of negligible change in electrical conductance of the FET devices made of nc-APBA-RGO complex after exposure to 10 mM lactose solution. Chapter 4 reports unipolar resistive switching in ultrathin films of chemically produced graphene (reduced graphene oxide) and multiwalled carbon nanotubes. The two - terminal devices with yield > 99% are made at room temperature by forming continuous films of graphene of thickness 20 nm on indium tin oxide coated glass electrode, followed by metal (Au or Al) deposition on the lm. These memory devices are non - volatile, rewritable with ON/OFF ratios up to 105 and switching times up to 10 s. The devices made of MWNT films are rewritable with ON/OFF ratios up to 400. The resistive switching mechanism is proposed to be nanogap formation. In the first part of Chapter 5, we study the interactions between SWNT and PETIM dendrimer by measuring the quenching of inherent fluorescence of the dendrimer. Also, the dendrimer - nanotube binding results in the increased electrical resistance of the hole-doped SWNT due to charge transfer interaction between the dendrimer and the nanotube. This charge transfer interaction was further corroborated by observing a shift in frequency of the tangential Raman modes of SWNT. Experimental studies were supplemented by all atom molecular dynamics simulations to provide a microscopic picture of the dendrimer - nanotube complex. The complexation was achieved through charge - transfer and hydrophobic interactions, aided by multitude of oxygen, nitrogen and n-propyl moieties of the dendrimer. We also studied the effect of acidic and neutral pH conditions on the binding affinities. In the second part, we show that SWNT decorated with sugar functionalized PETIM dendrimer is a very sensitive platform to quantitatively detect carbohydrate recognizing proteins, namely, lectins. The changes in electrical conductivity of SWNT in field effect transistor device due to carbohydrate - protein interactions forms the basis of this study. The mannose sugar attached PETIM dendrimers undergo charge - transfer interactions with the SWNT. The changes in the conductance of the dendritic sugar functionalized SWNT after addition of lectins in varying concentrations were found to follow the Langmuir type isotherm, giving the concanavalin A (Con A) - mannose affinity constant to be 8.5 106 M-1. The increase in the device conductance observed after adding 10 nM of Con A is same as after adding 20 µM of a non - specific lectin peanut agglutinin, showing the high specificity of the Con A - mannose interactions. The specificity of sugar-lectin interactions was characterized further by observing significant shifts in Raman modes of the SWNT. Chapter 6 reports the metal to semiconductor transition in metallic single-wall carbon nanotubes (SWNT) due to the wrapping of mannose attached poly (propyl ether imine) dendrimer (DM) molecule. Scanning tunneling spectroscopic (STS) measurements and ionic liquid top gated field effect transistor (FET) characteristics of the nanotube-dendrimer complex gives a band gap of 0.42eV, close to the E11 energy gap between the first van Hove singularities of 1.7nm diameter semiconducting nanotubes. The absence of Breit-Wigner-Fano (BWF) component in G band in the Raman spectrum of the nanotube-dendrimer complex corroborates the semiconductor nature of the tubes after wrapping with the dendrimer molecules. Dendrimer molecule breaks the symmetry in metallic SWNT by wrapping around it through the charge transfer interactions. In the first part of Chapter 7, we demonstrate a rigidity percolation transition and the onset of yield stress in a dilute aqueous dispersion of graphene oxide platelets (aspect ratio 5000) above a critical volume fraction of 3.75x10-4 with a percolation exponent of 2.4 ± 0.1.The viscoelastic moduli of the gel at rest measured as a function of time indicates the absence of structural evolution of the 3D percolated network of disks. However, a shear-induced aging giving rise to a compact jammed state and shear rejuvenation indicating a homogenous flow is observed when a steady shear stress (σ ) is imposed in creep experiments. We construct a shear diagram (σ vs volume fraction ϕ) and the critical stress above which shear rejuvenation occurs is identified as the yield stress σ y of the gel. The minimum steady state shear rate ƴm obtained from creep experiments agrees well with the end of the plateau region in a controlled shear rate flow curve, indicating a shear localization below ƴm. A steady state shear banding in the plateau region of the flow curve observed in particle velocimetry measurements in a couette geometry confirms that the dilute suspensions of GO platelets form a thixotropic yield stress fluid (TYSF). In the second part, we report that the creep experiments on a nematic liquid crystalline suspension of Graphene Oxide platelets which was established recently as a TYSF exhibit two characteristic timescales Tc and Tf marking the onset of yielding, and a final steady state of flow respectively. We show that both Tc and Tf exhibit a power law dependence on the applied stress σ which can be linked to the steady state flow behaviour of a TYSF. The smooth transition from Andrade creep to the onset of flow with ƴ~ t 0.7 at a critical strain ƴc for different applied stresses, is well captured by the master curve for the creep compliance, obtained through a simple scaling of the creep times with either Tc or Tf . We propose that the absence of diverging timescales for onset of flow as σ→ yield stress σy from above, is a characteristic feature of TYSF. The thesis concludes with a summary of the main results and a brief account of the scope of future work described in Chapter 8.

Page generated in 0.057 seconds