• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 455
  • 114
  • 113
  • 104
  • 13
  • 12
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • Tagged with
  • 1032
  • 251
  • 140
  • 107
  • 94
  • 93
  • 77
  • 70
  • 67
  • 58
  • 57
  • 55
  • 54
  • 47
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
771

Valorisation des résidus carbonatés industriels pour le traitement de sulfure d'hydrogène dans les effluents gazeux / Valorization of calcium carbonate-based solid wastes for the removal of hydrogen sulfide from gas

Galera Martinez, Marta 04 November 2015 (has links)
Cette thèse explore la possibilité d'utiliser des déchets solides carbonatés issus du procédé Solvay de fabrication de carbonate de sodium (Na2CO3) comme réactifs pour le traitement de l'H2S à des concentrations trouvées typiquement dans des stations d'épuration des eaux usées. Dans un premier temps, la réactivité de deux résidus issus du procédé Solvay ont été évalués en termes d'efficacité d'abattement d'H2S dans un réacteur gaz-liquide-solide à l'échelle laboratoire (250 ml). Ce réacteur fonctionne en mode semi-continu (passage continu du gaz à travers un volume fixe de suspension). L'influence des paramètres opératoires comme la teneur en solide de la suspension, la concentration en H2S, la vitesse d'agitation et le volume de suspension a été examinée. Les processus cinétiques et physico-chimiques mis en jeu ont été identifiés et expliqués malgré le milieu réactionnel complexe. Dans un deuxième temps, l'étude du traitement d'H2S a été réalisée à l'échelle pilote sur un site industriel de Solvay en utilisant une colonne à bulles avec passettes (170 L) qui fonctionne également en mode semi-continu. Les résultats de l'étude paramétrique à l'échelle laboratoire ont été confirmés à l'échelle pilote. Finalement, la colonne a été évaluée avec un effluent gazeux réel issu d'une station d'épuration d'eaux usées à Graulhet (81) qui contient jusqu'à 200 ppmv d'H2S. En présence d'autres gaz comme le méthane (0,4 % vol.), le dioxyde de carbone (2,5 % vol.), le système s'est révélé efficace pour l'abattement sélectif d'H2S. Un abattement quasi-total (100 %) a pu être maintenu pendant au moins deux semaines avec un batch de la suspension à base de résidu. Cette étude démontre la compétitivité du procédé en termes d'efficacité et de coût pour le traitement d'H2S dans des conditions ambiantes. Les résultats obtenus démontrent également la possibilité de transposition du procédé à l'échelle industrielle. / The purpose of this study to valorize solid wastes from the Solvay process for the production of sodium carbonate as reagents for the treatment of H2S in air at concentrations typically found in wastewater treatment plants (tens to hundreds of ppmv of H2S). Firstly, the reactivity of two residues was evaluated in a gas-liquid-solid reactor at laboratory scale (250 ml). This reactor operates semi-continuously (continuous passage of gas through a fixed volume of slurry). The influence of operating parameters including the solid content of the suspension, the concentration of H2S, the stirring speed and the volume of suspension was discussed. The kinetics, physicochemical processes as well as mechanism involved have been identified despite the complex reaction medium. Secondly, the H2S treatment was investigated at pilot scale using a bubble column with trays (170 L) which also operates in semi-continuous mode. The results of the parametric study obtained at laboratory scale were checked at pilot scale. Finally, the column was evaluated with a real gaseous effluent from a wastewater plant in Graulhet (Tarn, France) which contains up to 200 ppmv of H2S. In the presence of other gases as methane (0.4% vol.) and carbon dioxide (2.5% vol.), the system has proven to be effective for the selective elimination of H2S. A near total abatement (100%) was maintained for at least two weeks with only one batch of suspension. Stable and non-volatile sulfur compounds (sulfates, sulfites, thiosulfates) were formed as products of the process. This study demonstrates the competitiveness of the process in terms of cost-effectiveness for the treatment of H2S in ambient conditions. The results obtained also demonstrate the possibility of scaling-up the method to an industrial scale.
772

Hlavonožci a biostratigrafie jurských sedimentárních celků severních Čech / Cephalopods and biostratigraphy of North Bohemian Jurassic sediments

Hrbek, Jan January 2011 (has links)
The Jurassic ammonites from the Northern Bohemia has been revised on the base of the material stored in the National Museum in Prague and the Faculty of Science, Charles University in Prague. 23 species and 19 genera, belonging to 7 families were described on the basis of this systematical revision. This ammonite assemblage indicates a proportional occurence of the Boreal, Tethyan and also cosmopolitan taxa. Stratigraphically important taxa suggest a considerably longer period of sedimentation, predominantly represented by the Upper Jurassic carbonates. This interval may contain up to 9 ammonite zones. A pilot microfacial analysis of carbonates from Peškova stráň area (in Krásná Lípa vicinity) indicates a considerably higher variability of sedimentation area. The presence of micritic carbonates suggests the existence of a widespread areas in the Late Jurassic sea covering the Bohemian Massif. The biostratigraphy and palaeogeography is briefly discussed in the European Late Jurassic context. Key words: ammonites, Upper Jurassic, Northern Bohemia, carbonate sediments, biostratigraphy, palaeogeography
773

A Modified Adhesive System for Use in Treatment of Dentin Hypersensitivity

AlShehri, Aram Mushabbab 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI)
774

Integrated subsurface study on lithofacies and diagenetic controls over porosity distribution in the Upper Ordovician Trenton Limestone in Northwestern Ohio

Ahsan, Mustafa 17 May 2019 (has links)
No description available.
775

<i>In-situ</i> scanning tunneling microscopy studies of the SEI formation on graphite anodes in propylene carbonate

Dehiwala Liyanage, Chamathka H. January 2019 (has links)
No description available.
776

Sound Velocity, Density, and Equation of State of Silicate and Carbonate Melts in the Earth’s Mantle

XU, MAN 02 June 2020 (has links)
No description available.
777

Localized Corrosion Initiation of Steel in CO2 Environments

Gao, Xin 22 September 2020 (has links)
No description available.
778

Build-and-Fill Development of Lower Ismay (Middle Pennsylvanian Paradox Formation) Phylloid-Algal Mounds of the Paradox Basin, Southeastern Utah

Reed, Lincoln H 01 August 2014 (has links) (PDF)
Phylloid-algal mounds form heterogeneous hydrocarbon reservoirs in the southeastern portion (Blanding sub-basin) of the Paradox Basin. Well-studied Lower Ismay mounds exposed along walls of the San Juan River gorge in the vicinity of Eight Foot Rapids, the west limb of the Raplee Anticline, and at the classic Honaker Trail locality (southwestern Paradox Basin) have often been cited as outcrop analogs of productive subsurface mounds. Until now, however, there has not been a complete description of the distribution, size, and spacing of outcropping algal mounds at the classic Eight Foot Rapids locality. The Lower Ismay sequence was analyzed in the context of a build-and-fill model of deposition. There are three facies associations within the sequence: 1) a basal lowstand to middle highstand pre-mound facies association, 2) a late highstand to middle falling stage phylloid algal-dominated relief-building facies association, and 3) a late falling stage, post-mound relief-filling facies association. Above the basal maximum flooding surface (Gothic Shale), the facies succession displays a distinct shallowing upward trend through the Lower Ismay sequence. Mound dimensions and facies stacking patterns permit evaluation of two depositional models. The first is a traditional, moderate- to low-energy model of vertical and radial mound accumulation of phylloid algal plates. The second is a high-energy, tidally influenced model of accumulation wherein mounds become hydrodynamically elongate. Outcrop data indicate that algal-dominated buildups are domal in shape with no preferred axis of elongation. These patterns do not support a hydrodynamic accumulation of loose algal plate fragments. The absence of in-situ algal thalli in all but the upper few tens of centimeters of the mounds, however, argues against a purely biological/ecological origin of mounds. A down-stepping ramp model is proposed wherein a muddy algal facies was deposited at the base of the mounds in the low energy of the outer ramp, followed by a grain-rich algal core in the mid-ramp environment. Mounds tops accumulated in an algal bafflestone facies in the inner ramp setting. Restriction of energy due to basinward algal buildup may have also contributed to deposition of algal bafflestone. Mounds accumulated radially at differential rates and were influenced by these variations in energy. This differential deposition of microfacies and subsequent diagenetic alteration have produced heterogeneities in algal reservoir rock, producing algal mound reservoirs that have a high potential for compartmentalization.
779

Carbonate Chemistry Characterization in a Low-Inflow Estuary with Recent Seagrass Loss

Higgins, Jolie 01 June 2019 (has links) (PDF)
Estuaries are dynamic environments that are strongly affected by natural variability, as well as direct and indirect anthropogenic impacts. A better understanding of the drivers of carbon fluxes and biogeochemical variability in estuarine systems is needed, particularly with the increasing threat of ocean acidification. Morro Bay in Central California is a small nationally protected estuary, with seasonally low freshwater inputs. Since 2007, the bay has experienced a significant loss of native seagrass, Zostera marina, which is an important component of the marine ecosystem. Because seagrass photosynthesis decreases carbon dioxide and increases oxygen in the water column, the loss of seagrass has the potential to substantially change short-term carbonate chemistry and long-term carbon fluxes of an estuary. The spatial variability of carbonate chemistry was measured in Morro Bay using ship-board surveys during the low-inflow summer season and measured the temporal variability by collecting samples close to the shore from July to November. Discrete samples show an increase in total alkalinity and dissolved inorganic carbon in the mid and back bay regions, historically dominated by seagrass. Slightly lower total alkalinity and dissolved inorganic carbon were observed in the Fall season compared to the low-inflow Summer season. Analysis of the relative modification of alkalinity and dissolved inorganic carbon, paired with salinity and temperature data, contributes to an understanding of the drivers of the observed carbonate variability. This understanding may provide clues to the causes and effects of observed changes to the bay with seagrass loss. More broadly, it will inform the vulnerability of other low-inflow estuaries to future acidification and highlight the role seagrasses play in mitigating local acidification.
780

Characterisation of Poly(trimethylene carbonate) and f-BTI2g-TVTCN blends for the use in Biosensors / Karakterisering av poly(trimetylenkarbonat) och f-BTI2g-TVTCN blandningar för användning inom biosensorer

El Ghamri, Sara, Kammeby, Ed, Göransson, Herman, Stjerngren, Arvid January 2023 (has links)
This report aims to study the degradation of poly(trimethylene carbonate) (PTMC) caused by the enzyme carboxylesterase in vitro. As well as to characterise polymer blends of f-BTI2g-TVTCN and poly(3-hydroxybutyric acid) as core components for organic electrochemical transistors (OETCs). This is to assess the suitability of these polymers in biodegradable biosensors. The degradation study of PTMC showed a lack of degradation in contrast to previous studies performed on the material; previous studies recorded a mass loss of between (5-8)% after two months. The cause for this discrepancy is still unknown but the evidence points to both systematic faults in the gravimetric analysis as well as random errors found in the equipment. The OECT showed that increasing the PHB fraction in the polymer blend resulted in a higher output. The most stable device consisted of a 1:6 blend of f-BTI2g-TVTCN to PHB. Fewer tests were conducted on the 1:10 blend because two devices were damaged during the experiment. The statistical impact of the smaller sample size cannot be overstated so further testing should be conducted to verify the results.

Page generated in 0.04 seconds