• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 28
  • 28
  • 11
  • 11
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Designing biomaterials for controlled cardiac stem cell differentiation and enhanced cell therapy in the treatment of congestive heart failure / Conception de biomatériaux pour le contrôle de la différenciation cardiaque à partir de cellules souches et pour l’amélioration de la thérapie cellulaire dans le traitement de l’insuffisance cardiaque sévère

Farouz, Yohan 30 September 2015 (has links)
La thérapie cellulaire se positionne comme une stratégie prometteuse pour inciter le cœur infarci à se régénérer. A cet effet, des études récentes placent des espoirs considérables dans l’utilisation des cellules souches embryonnaires et notre laboratoire a déjà démontré comment les différencier en progéniteurs cardiovasculaires, un type de précurseurs cellulaires qui ne peut aboutir qu’à la formation de cardiomyocytes, de cellules endothéliales ou de cellules de muscles lisses. Cet engagement précoce réduit leur capacité de prolifération anarchique et en même temps leur permet de rester suffisamment plastiques pour éventuellement s’intégrer plus facilement avec le tissue hôte. Cependant, les études précliniques et cliniques d’injection de ces cellules s’avérèrent décevantes. Malgré de légères améliorations de la fonction cardiaque, on observa une trop faible survie cellulaire ainsi qu’un taux de rétention des cellules dans le myocarde remarquablement bas. Afin d’étudier ce problème, mes travaux de thèse ont porté non seulement sur la conception de nouveaux biomatériaux pouvant servir de moyen de transport et d’intégration des cellules dans la zone infarcie, mais aussi sur la conception de biomatériaux permettant de contrôler précisément l’environnement cellulaire au cours du processus de différenciation de cellules souches pluripotentes humaines en cardiomyocytes. Grâce aux importantes interactions entre nos laboratoires de recherche fondamentale et de recherche clinique, nous avons tout d’abord développé de nouvelles techniques de fabrication et de caractérisation de patches de fibrine cellularisés qui sont récemment entrés dans un essai clinique de phase I. A partir de cette formulation clinique approuvée par les autorités de régulation, nous avons élaboré toute une gamme de matériaux composites uniquement à base de matières premières pertinentes dans ce cadre clinique, dans le but d’améliorer la maturation des progéniteurs cardiovasculaires une fois greffés sur le cœur défaillant. Dans cette optique, nous avons également développé un modèle in vitro permettant d’étudier précisément l’influence combinée de la rigidité du substrat et du confinement spatial sur la différenciation des cellules souches en cardiomyocytes. Grâce à des techniques de microfabrication sur substrat mou, il a été possible de positionner précisément les cellules souches pluripotentes dans des espaces restreints d’élasticité variable. Ainsi, nous avons pu observer que même en utilisant des protocoles chimiques éprouvés basés sur la modulation de cascades de signalisation impliquées dans le développement cardiaque, une très forte hétérogénéité pouvait apparaître en fonction de l’environnement physique des cellules. Nous avons ainsi pu extraire les caractéristiques principales permettant une différenciation cardiaque efficace, reproductible et standardisée et les avons appliquées à la fabrication d’une nouvelle génération de patches composés de matériaux cliniques et de couches multiples de bandes synchrones de cardiomyocytes. De fait, ces travaux ouvrent de nouvelles voies dans l’utilisation de biomatériaux pour la production industrielle de cardiomyocytes et pour la fabrication de patches cliniques, cellularisés ou non, dans le traitement de l’insuffisance cardiaque. / Cell therapy is a promising strategy to help regenerate the damaged heart. Recent studies have placed a lot of hopes in embryonic stem cells and our lab had previously found a way to differentiate them into cardiac progenitors, cells that can only differentiate into cardiomyocyte, endothelial cells or smooth muscle cells. This early commitment decreases their proliferative capabilities, yet maintains their plasticity for better integration inside the host tissue. However, clinical and pre-clinical injection studies did not really meet the expectations. Even though slight improvements in cardiac function were demonstrated, very low cell viability has been observed, as well as a very low retention of the cells inside the myocardium. To address this problem, my PhD projects not only focus on the design of new biomaterials to act as a vehicle for cell delivery and retention in the infarcted area, but also on the design of biomaterials that control the cellular environment during the differentiation of pluripotent stem cells into cardiomyocytes. Going back and forth between the labs and the clinics, we first developed new techniques for the fabrication and the characterization of a cell-laden fibrin patch that is now undergoing phase I clinical trial. From the approved clinical formulation, we then propose new blends of clinical materials that will eventually improve the maturation of the cardiac progenitors once grafted onto the failing heart. In this perspective, we developed an in vitro model to investigate the combined influence of matrix elasticity and topographical confinement on stem cell differentiation into cardiomyocytes. By using microfabrication techniques to pattern pluripotent stem cells on substrates of controlled stiffness, we demonstrate that even using a widely recognized chemical-based protocol to modulate signaling cascades during differentiation, much heterogeneity emerges depending on the cellular physical environment. We thus extracted the main features that led to controlled and reproducible cardiac differentiation and applied it to the fabrication of next generation of multi-layered anisotropic cardiac patches in compliances with clinical requirements. This work opens new routes to high-scale production of cardiomyocytes and the fabrication of cell-laden or cell-free clinical patches.
22

Histone Deacetylase 3 Coordinates Heart Development Through Stage-Specific Roles in Cardiac Progenitor Cells

Lewandowski, Sara L. 21 December 2016 (has links)
Disruptions in cardiac development cause congenital heart disease, the most prevalent and deadly congenital malformation. Genetic and environmental factors are thought to contribute to these defects, however molecular mechanisms remain largely undefined. Recent work highlighted potential roles of chromatin- modifying enzymes in congenital heart disease pathogenesis. Histone deacetylases, a class of chromatin-modifying enzymes, have developmental importance and recognized roles in the mature heart. This thesis aimed to characterize functions of Hdac3 in cardiac development. We found loss of Hdac3 in the primary heart field causes precocious progenitor cell differentiation, resulting in hypoplastic ventricular walls, ventricular septal defect, and mid- gestational lethality. In primary heart field progenitors, Hdac3 interacts with, deacetylates, and functionally suppresses transcription factor Tbx5. Furthermore, a disease-associated Tbx5 mutation disrupts this interaction, rendering Tbx5 hyperacetylated and hyperactive. By contrast, deletion of Hdac3 in second heart field progenitors bypasses these defects, instead causing malformations in the outflow tract and semilunar valves, with lethality prior to birth. Affected semilunar valves and outflow tract vessels exhibit extracellular matrix and EndMT defects and activation of the Tgfβ1 signaling pathway. In normal second heart field development, Hdac3 represses Tgfβ1 transcription, independent of its deacetylase activity, by recruiting the PRC2 methyltransferase complex to methylate the Tgfβ1 promoter. Importantly, knockouts of Hdac3 in differentiated cardiac cells do not fully recapitulate the progenitor-specific knockout phenotypes. These results illustrate spatiotemporal roles of Hdac3, both deacetylase-dependent and deacetylase-independent, in cardiac development, suggesting that dysregulation of Hdac3 in cardiac progenitor cells could be a contributing factor in congenital heart disease pathogenesis.
23

The impact of preterm birth on the cardiovascular system in young adulthood

Lewandowski, Adam J. January 2013 (has links)
Advancements in clinical care have led to a growing cohort of preterm-born individuals now entering adulthood. Before birth, such adults were often exposed to a suboptimal intrauterine environment, and after delivery, key developmental stages that would normally occur in utero during the third trimester had to take place under ex utero physiological conditions. Through detailed cardiovascular phenotyping, this thesis investigates the cardiovascular changes in preterm-born young adults, utilising a cohort of individuals with data collection since recruitment at birth. The detailed perinatal information was first used to design nested case-control studies to investigate the effects of early lipid and glucocorticoid exposure on long-term cardiovascular physiology in individuals born preterm. It was demonstrated that intravenous lipid administration leads to an artificial elevation of total cholesterol levels in immediate postnatal life, which is associated with long-term changes in aortic and left ventricular function proportional to the degree of cholesterol elevation. Additionally, exposure to antenatal glucocorticoids relates to a regional increase in aortic arch stiffness in young adulthood, as well as changes in glucose metabolism. It was then shown that young adults born preterm have increased left ventricular mass, out of proportion to blood pressure, and a unique three-dimensional left ventricular geometry, with reduced systolic and diastolic function compared to term-born controls. Similarly, they also show distinct differences in the right ventricle, with increased right ventricular mass and a proportion having clinically impaired right ventricular systolic function. Finally, it was demonstrated that preterm-born individuals have increased circulating levels of antiangiogenic factors in young adulthood, which relate to capillary rarefaction and blood pressure elevation. These findings are of considerable public health relevance given that nearly 10% of births are now preterm. Understanding whether modification of these variations in cardiovascular structure and function prevent the development of cardiovascular disease in this growing subgroup of the population will be of future interest.
24

Essential role of GATA5 in the mammalian heart

Laforest, Brigitte 03 1900 (has links)
réalisé en cotutelle avec le Dr. Marie Kmita et Dr. Marco Horb / Chez l’humain, les maladies congénitales cardiaques (MCC) sont présentes chez 3-4% des nouveaux nés et sont une cause importante de mortalité infantile et de morbidité dans le monde. La majorité des MCCs implique les valves et les septums, qui proviennent des cellules endocardiques. Les valves aortiques bicuspides (VAB) sont la MCC la plus fréquente chez l’humain, avec un taux estimé de 1-2% dans la population. Cependant, les gènes et les mécanismes moléculaires qui causent cette malformation demeurent obscures. Le facteur de transcription GATA5 est exprimé dans les cellules et les coussins endocardiques de façon transitoire durant la septation et la formation des compartiments cardiaques. Chez le poisson zèbre, des mutations dans le gène Gata5 causent des malformations cardiaques sévères incluant l’absence de cellules endocardiques. In vitro, l’inhibition de Gata5 bloque la différentiation endocardique. Ces études suggéraient donc un rôle important de GATA5 dans la formation du cœur. Dans le cadre de ce projet de doctorat, nous avons analysé le rôle de GATA5 dans le développement du cœur en produisant des lignées de souris chez lesquelles le gène Gata5 était inactif soit dans toutes les cellules ou uniquement dans les cellules endocardiques. Les souris possédant 2 allèles mutées du gène Gata5 étaient viables mais plus de 26% des souris Gata5-/- ont développé des VABs. Par ailleurs, une incidence similaire de VABs a été obtenue chez les souris ayant une délétion spécifique de Gata5 des cellules endocardiques, obtenue en croisant les souris Gata5WT/Flox avec les souris transgéniques Tie2-Cre. Sur le plan mécanistique, une réduction significative de JAG1, un corécepteur pour Notch1, ainsi qu’une augmentation marquée de Rbj un répresseur de cette voie, ont été détectés chez les souris Gata5-/- et Tie2- cre+;Gata5Flox/Flox, suggérant qu’une dérégulation de la voie Notch dans les cellules endocardiques puisse être la cause des VABs. Ces résultats démontrent l’importance de GATA5 pour le développement endocardique et la formation de la valve aortique. De plus, ils identifient GATA5 comme gène candidat de MCCs chez l’humain. Environ 12-14% des MCCs sont causés par le développement anormal de la voie de chasse, menant aux malformations telles que la transposition des grandes artères, la tétralogie de Fallot ou le syndrome du ventricule droit à double issue. Des mutations dans Gata4 et Gata6 sont associés à des défauts de la voie de chasse, dans plusieurs espèces incluant l’humain. Nous avons examiné si GATA5 interagit avec GATA4 ou GATA6 dans le développement de la voie de chasse. Alors que les souris hétérozygotes pour Gata5, Gata4 ou Gata6 ont des défauts cardiaques subtiles et sont viables, les embryons Gata4+/-Gata5+/- et Gata5+/-Gata6+/- démontrent une létalité embryonnaire et périnatale due à des défauts cardiaques, tel qu’un ventricule droit à double issue et des défauts de septation ventriculaire. Ces résultats indiquent l'importance des interactions génétiques entre GATA5 et les autres facteurs GATA pour la rotation et l’alignement de la voie de chasse au cours du développement cardiaque et soulèvent la possibilité que des changements subtiles de l'activité de 2 facteurs GATA puissent mener à des MCCs chez l'humain. / Congenital heart defect (CHD) in humans occur in 3-4% of live birth and is a major cause of infant mortality and morbidity in the world. The majority of CHD involves the valves and septa, which originate from endocardial cells. Bicuspid aortic valve (BAV) is the most common CHD in humans with an estimated rate of 1-2% in the population. However, very few genes have been linked to this defect and the mechanisms underlying BAV formation remain undefined. GATA5, a member of the GATA family of transcription factors, is expressed in a spatial and temporal manner in the developing heart where it is predominantly found in endocardial cells and endocardial cushions (ECs) of the outflow tract (OFT) and atrioventricular canal between E9.5-E12.5 in the mouse. Mutations in the Gata5 gene in zebrafish (faust mutants) cause cardia bifida and lead to endocardial cell depletion. In vitro studies using antisense mRNA against Gata5 revealed a critical role for this gene in differentiation of endocardial cells. In the context of the present doctoral research project, we investigated the role of GATA5 in mammalian heart development by generating a mouse line with a null Gata5 allele. Gata5 null mice are viable but over 26% of them developed BAVs. Endocardial specific deletion of Gata5 obtained by crossing mice with floxed (Flox) Gata5 alleles with Tie2-cre transgenic mice resulted in a similar incidence of BAVs. RNA profiling revealed that Jag-1, a co-receptor for Notch1, is significantly downregulated in both Gata5 null and Tie2-cre+;Gata5Flox/Flox mice, suggesting that disruption of Notch signaling in endocardial cells may be the underlying mechanism of disease. These findings reveal an important function for GATA5 in endocardial cell development and aortic valve formation and identify GATA5 as an important candidate CHD causing gene. Abnormal development of the OFT accounts for about 12-14% of all CHDs, leading to malformations such as persistent truncus arteriosus (PTA), tetralogy of Fallot (TOF), double outlet right ventricle (DORV) and transposition of the great arteries (TGA). Both GATA4 and GATA6 play important role in OFT development. We tested whether GATA5 might interact genetically with GATA4 and GATA6 for proper heart morphogenesis. We found that, whereas mice lacking a single copy of Gata5, Gata4 or Gata6 have subtle cardiac defects, the Gata4+/-Gata5+/- and Gata5+/-Gata6+/- mutant embryos show embryonic and perinatal lethality due to severe heart defects, including double outlet right ventricle and ventricular septal defects. These findings reveal the importance of genetic interactions between GATA5 and the other cardiac GATA factors in the normal rotation and patterning of the OFT during heart development in vivo. The results raise the possibility that subtle alterations in the level or activity of 2 cardiac GATA factors might lead to congenital heart disease in human.
25

Essential role of GATA5 in the mammalian heart

Laforest, Brigitte 03 1900 (has links)
Chez l’humain, les maladies congénitales cardiaques (MCC) sont présentes chez 3-4% des nouveaux nés et sont une cause importante de mortalité infantile et de morbidité dans le monde. La majorité des MCCs implique les valves et les septums, qui proviennent des cellules endocardiques. Les valves aortiques bicuspides (VAB) sont la MCC la plus fréquente chez l’humain, avec un taux estimé de 1-2% dans la population. Cependant, les gènes et les mécanismes moléculaires qui causent cette malformation demeurent obscures. Le facteur de transcription GATA5 est exprimé dans les cellules et les coussins endocardiques de façon transitoire durant la septation et la formation des compartiments cardiaques. Chez le poisson zèbre, des mutations dans le gène Gata5 causent des malformations cardiaques sévères incluant l’absence de cellules endocardiques. In vitro, l’inhibition de Gata5 bloque la différentiation endocardique. Ces études suggéraient donc un rôle important de GATA5 dans la formation du cœur. Dans le cadre de ce projet de doctorat, nous avons analysé le rôle de GATA5 dans le développement du cœur en produisant des lignées de souris chez lesquelles le gène Gata5 était inactif soit dans toutes les cellules ou uniquement dans les cellules endocardiques. Les souris possédant 2 allèles mutées du gène Gata5 étaient viables mais plus de 26% des souris Gata5-/- ont développé des VABs. Par ailleurs, une incidence similaire de VABs a été obtenue chez les souris ayant une délétion spécifique de Gata5 des cellules endocardiques, obtenue en croisant les souris Gata5WT/Flox avec les souris transgéniques Tie2-Cre. Sur le plan mécanistique, une réduction significative de JAG1, un corécepteur pour Notch1, ainsi qu’une augmentation marquée de Rbj un répresseur de cette voie, ont été détectés chez les souris Gata5-/- et Tie2- cre+;Gata5Flox/Flox, suggérant qu’une dérégulation de la voie Notch dans les cellules endocardiques puisse être la cause des VABs. Ces résultats démontrent l’importance de GATA5 pour le développement endocardique et la formation de la valve aortique. De plus, ils identifient GATA5 comme gène candidat de MCCs chez l’humain. Environ 12-14% des MCCs sont causés par le développement anormal de la voie de chasse, menant aux malformations telles que la transposition des grandes artères, la tétralogie de Fallot ou le syndrome du ventricule droit à double issue. Des mutations dans Gata4 et Gata6 sont associés à des défauts de la voie de chasse, dans plusieurs espèces incluant l’humain. Nous avons examiné si GATA5 interagit avec GATA4 ou GATA6 dans le développement de la voie de chasse. Alors que les souris hétérozygotes pour Gata5, Gata4 ou Gata6 ont des défauts cardiaques subtiles et sont viables, les embryons Gata4+/-Gata5+/- et Gata5+/-Gata6+/- démontrent une létalité embryonnaire et périnatale due à des défauts cardiaques, tel qu’un ventricule droit à double issue et des défauts de septation ventriculaire. Ces résultats indiquent l'importance des interactions génétiques entre GATA5 et les autres facteurs GATA pour la rotation et l’alignement de la voie de chasse au cours du développement cardiaque et soulèvent la possibilité que des changements subtiles de l'activité de 2 facteurs GATA puissent mener à des MCCs chez l'humain. / Congenital heart defect (CHD) in humans occur in 3-4% of live birth and is a major cause of infant mortality and morbidity in the world. The majority of CHD involves the valves and septa, which originate from endocardial cells. Bicuspid aortic valve (BAV) is the most common CHD in humans with an estimated rate of 1-2% in the population. However, very few genes have been linked to this defect and the mechanisms underlying BAV formation remain undefined. GATA5, a member of the GATA family of transcription factors, is expressed in a spatial and temporal manner in the developing heart where it is predominantly found in endocardial cells and endocardial cushions (ECs) of the outflow tract (OFT) and atrioventricular canal between E9.5-E12.5 in the mouse. Mutations in the Gata5 gene in zebrafish (faust mutants) cause cardia bifida and lead to endocardial cell depletion. In vitro studies using antisense mRNA against Gata5 revealed a critical role for this gene in differentiation of endocardial cells. In the context of the present doctoral research project, we investigated the role of GATA5 in mammalian heart development by generating a mouse line with a null Gata5 allele. Gata5 null mice are viable but over 26% of them developed BAVs. Endocardial specific deletion of Gata5 obtained by crossing mice with floxed (Flox) Gata5 alleles with Tie2-cre transgenic mice resulted in a similar incidence of BAVs. RNA profiling revealed that Jag-1, a co-receptor for Notch1, is significantly downregulated in both Gata5 null and Tie2-cre+;Gata5Flox/Flox mice, suggesting that disruption of Notch signaling in endocardial cells may be the underlying mechanism of disease. These findings reveal an important function for GATA5 in endocardial cell development and aortic valve formation and identify GATA5 as an important candidate CHD causing gene. Abnormal development of the OFT accounts for about 12-14% of all CHDs, leading to malformations such as persistent truncus arteriosus (PTA), tetralogy of Fallot (TOF), double outlet right ventricle (DORV) and transposition of the great arteries (TGA). Both GATA4 and GATA6 play important role in OFT development. We tested whether GATA5 might interact genetically with GATA4 and GATA6 for proper heart morphogenesis. We found that, whereas mice lacking a single copy of Gata5, Gata4 or Gata6 have subtle cardiac defects, the Gata4+/-Gata5+/- and Gata5+/-Gata6+/- mutant embryos show embryonic and perinatal lethality due to severe heart defects, including double outlet right ventricle and ventricular septal defects. These findings reveal the importance of genetic interactions between GATA5 and the other cardiac GATA factors in the normal rotation and patterning of the OFT during heart development in vivo. The results raise the possibility that subtle alterations in the level or activity of 2 cardiac GATA factors might lead to congenital heart disease in human. / réalisé en cotutelle avec le Dr. Marie Kmita et Dr. Marco Horb
26

Cardiotoxic effects of polycyclic aromatic hydrocarbons and abiotic stressors in early life stage estuarine teleosts

Elizabeth B Allmon (10724124) 29 April 2021 (has links)
<div>Following the 2010 Deepwater Horizon oil spill, extensive research has been conducted on the toxicity of oil and polycyclic aromatic hydrocarbons (PAHs) in the aquatic environment. The location and timing of the Deepwater Horizon surface slick coincided with the spawning seasons of many important pelagic and estuarine fish species. As such, there has been particular emphasis placed on the effects of PAHs on sensitive life history stages in fish, such as the embryonic and larval periods. Additionally, the spill occurred throughout the spring and summer months which, in estuaries, are marked by regular fluctuations in abiotic environmental factors such as dissolved oxygen, salinity, and temperature. Until recently, there has been little work done to elucidate the combined effects that PAHs from oil spills and adverse environmental conditions (hypoxia, increased salinity, and elevated temperatures).</div><div>Work presented in this dissertation uses next generation sequencing technology (RNA Seq) to determine differential gene expression in larval estuarine teleosts following exposure to adverse environmental conditions and PAHs. Downstream canonical pathway and toxicological function analysis were then applied to the identified differentially expressed genes (DEGs) to predict cardiotoxic responses at the organismal level. To verify the predicted responses, a phenotypic anchoring study was conducted and identified a cardiotoxic phenotype (pericardial edema) and reduced cardiac output in embryos exposed to oil. Finally, the mechano-genetic interplay governing the morphological development of the teleost heart was investigated and correlations between developmental gene expression and blood flow forces within the cardiovascular system were identified.</div>
27

Shp2 deletion in post-migratory neural crest cells results in impaired cardiac sympathetic innervation

Lajiness, Jacquelyn D. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Autonomic innervation of the heart begins in utero and continues during the neonatal phase of life. A balance between the sympathetic and parasympathetic arms of the autonomic nervous system is required to regulate heart rate as well as the force of each contraction. Our lab studies the development of sympathetic innervation of the early postnatal heart in a conditional knockout (cKO) of Src homology protein tyrosine phosphatase 2 (Shp2). Shp2 is a ubiquitously expressed non-receptor phosphatase involved in a variety of cellular functions including survival, proliferation, and differentiation. We targeted Shp2 in post-migratory neural crest (NC) lineages using our novel Periostin-Cre. This resulted in a fully penetrant mouse model of diminished cardiac sympathetic innervation and concomitant bradycardia that progressively worsen. Shp2 is thought to mediate its basic cellular functions through a plethora of signaling cascades including extracellular signal-regulated kinases (ERK) 1 and 2. We hypothesize that abrogation of downstream ERK1/2 signaling in NC lineages is primarily responsible for the failed sympathetic innervation phenotype observed in our mouse model. Shp2 cKOs are indistinguishable from control littermates at birth and exhibit no gross structural cardiac anomalies; however, in vivo electrocardiogram (ECG) characterization revealed sinus bradycardia that develops as the Shp2 cKO ages. Significantly, 100% of Shp2 cKOs die within 3 weeks after birth. Characterization of the expression pattern of the sympathetic nerve marker tyrosine hydroxylase (TH) revealed a loss of functional sympathetic ganglionic neurons and reduction of cardiac sympathetic axon density in Shp2 cKOs. Shp2 cKOs exhibit lineage-specific suppression of activated pERK1/2 signaling, but not of other downstream targets of Shp2 such as pAKT (phosphorylated-Protein kinase B). Interestingly, restoration of pERK signaling via lineage-specific expression of constitutively active MEK1 (Mitogen-activated protein kinase kinase1) rescued TH-positive cardiac innervation as well as heart rate. These data suggest that the diminished sympathetic cardiac innervation and the resulting ECG abnormalities are a result of decreased pERK signaling in post-migratory NC lineages.
28

Hand2 function within non-cardiomyocytes regulates cardiac morphogenesis and performance

VanDusen, Nathan J. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The heart is a complex organ that is composed of numerous cell types, which must integrate their programs for proper specification, differentiation, and cardiac morphogenesis. During cardiac development the basic helix-loop-helix transcription factor Hand2 is dynamically expressed within the endocardium and extra-cardiac lineages such as the epicardium, cardiac neural crest cells (cNCCs), and NCC derived components of the autonomic nervous system. To investigate Hand2 function within these populations we utilized multiple murine Hand2 Conditional Knockout (H2CKO) genetic models. These studies establish for the first time a functional requirement for Hand2 within the endocardium, as several distinct phenotypes including hypotrabeculation, tricuspid atresia, aberrant septation, and precocious coronary development are observed in endocardial H2CKOs. Molecular analyses reveal that endocardial Hand2 functions within the Notch signaling pathway to regulate expression of Nrg1, which encodes a crucial secreted growth factor. Furthermore, we demonstrate that Notch signaling regulates coronary angiogenesis via Hand2 mediated modulation of Vegf signaling. Hand2 is strongly expressed within midgestation NCC and endocardium derived cardiac cushion mesenchyme. To ascertain the function of Hand2 within these cells we employed the Periostin Cre (Postn-Cre), which marks cushion mesenchyme, a small subset of the epicardium, and components of the autonomic nervous system, to conditionally ablate Hand2. We find that Postn-Cre H2CKOs die shortly after birth despite a lack of cardiac structural defects. Gene expression analyses demonstrate that Postn-Cre ablates Hand2 from the adrenal medulla, causing downregulation of Dopamine Beta Hydroxylase (Dbh), a gene encoding a crucial catecholaminergic biosynthetic enzyme. Electrocardiograms demonstrate that 3-day postnatal Postn-Cre H2CKO pups exhibit significantly slower heart rates than control littermates. In conjunction with the aforementioned gene expression analyses, these results indicate that loss of Hand2 function within the adrenal medulla results in a catecholamine deficiency and subsequent heart failure.

Page generated in 0.0894 seconds