• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 208
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 13
  • 11
  • 6
  • 1
  • 1
  • Tagged with
  • 268
  • 268
  • 49
  • 37
  • 36
  • 34
  • 31
  • 29
  • 28
  • 25
  • 21
  • 19
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Manganese-Dependent Serine/Threonine/Tyrosine Kinase From Arabidopsis Thaliana : Role Of Serine And Threonine Residues In The Regulation Of Kinase Activity

Reddy, Mamatha M 08 1900 (has links)
Protein phosphorylation is an important post-translational modification of proteins, which can either activate or inhibit the function of a given protein. The enzymes, protein kinases and protein phosphatases catalyze the phosphorylation and dephosphorylation of target proteins, respectively. Protein kinases catalyze the transfer of γ-phosphate from ATP to serine, threonine or tyrosine residues in target proteins. They are traditionally classified as protein serine/threonine kinases and protein tyrosine kinases based on the amino acid to which they transfer the phosphate group. Protein tyrosine kinases play vital roles in numerous pathways that regulate growth, development and oncogenesis in animals. However, no protein tyrosine kinase has been cloned so far from plants. The sequence motif, CW(X)6RPXF of sub-domain XI is well conserved among biochemically characterized protein tyrosine kinases from human, rat, mice, worm, fruitfly and Dictyostelium. To seek plant genes encoding tyrosine kinase, we have performed extensive genome-wide analysis of Arabidopsis thaliana using the delineated tyrosine kinase from animal systems. Repetitive database mining with CW(X)6RPXF sequence motif revealed the presence of 57 different protein kinases that have tyrosine kinase motifs. Myosin light chain protein kinase was identified as false positive with this motif. Multiple sequence alignment of all the 57 kinases indicated the presence of twelve conserved sub-domains in their kinase catalytic domain. Out of the 12 sub-domains present in protein kinases, sub-domain VIb confers serine/threonine kinase Specificity and sub-domains VIII and XI confer tyrosine kinase specificity. All the 57 kinases were Verified to contain CW(X) 6RPXF in sub-domain XI. However, the catalytic domain of all the catalogued kinases contain KXXN motif in sub-domain VIb, which is indicative of serine/threonine Kinase specificity. None of the kinases had the tyrosine kinase consensus motif RAA or ARR in sub-domain VIb. Thus, the catalytic domains of all the identified Arabidopsis protein kinases have motifs for serine/threonine specificity in sub-domain VIb and tyrosine kinase motif in sub-domain XI. These results indicate that perhaps all the kinases belong to the dual-specificity kinase family. Hence, we have tentatively named these protein sequences as STY (serine/threonine/tyrosine) protein kinases. To examine the relationships of Arabidopsis STY protein kinases, a topographic cladogram was constructed. Casein kinase 1 was used as an outgroup to perceive the true class of STY protein kinase family. Neighbor joining tree was constructed with the full-length protein sequences following the alignments. Dendrogram of STY protein kinases suggested that the kinases are mainly clustered into four groups. Group I includes kinases related to ATN1-like kinases, peanut STY related kinases, soybean GmPK6-like kinases and ATMRK1-like kinases. Group II consists of MAP3K-like kinases, CTR1 and EDR1 related kinases. Group III includes protein kinases that harbor ankyrin domain repeat motifs. These kinases are related to Medicago sativa ankyrin kinase, MsAPK1. Group IV consists of light sensory kinases that are related to Ceratodon purpureus phytochrome kinase. C. purpureus light sensory kinase has both phytochrome and protein kinase domains. However, the protein kinases of group IV do not have a phytochrome domain. BLAST analysis was performed using CW(X)6RPXF motif against all the available plant sequences in the database. We retrieved 11 rice protein kinases and 14 Dictyostelium kinases. In addition, we obtained STY protein kinases from wheat, barley, soybean, tomato, beech and alfalfa. Dendrogram analysis indicated that the plant STY protein kinases are clustered in similar manner as observed for Arabidopsis. Large number of sequences were retrieved when the tyrosine kinase motif CW(X)6RPXF was used to perform BLAST analysis against all the known sequences from animals. As large numbers of protein tyrosine kinases are available in animals, we have used representative kinases of each family towards the construction of phylogenetic tree. The main difference between the animal and plant tyrosine kinases is in the consensus motif conferring the tyrosine and serine/threonine specificity in the sub-domain VIb. Animal tyrosine kinases have consensus ARR/RAA in sub-domain VIb and plant kinases have KXXN which is indicative of serine/threonine specificity. Expression analysis of Arabidopsis STY protein kinases was performed using Genevestigator online search tool Meta-Analyzer. Genes were grouped based on their relative expression levels during a specific growth stage, in a particular organ or following different environmental stresses. Various kinases are highly expressed in stamens and seeds while some kinases are expressed ubiquitously. A number of biotic and abiotic factors upregulated plant STY protein kinases. Gene expression data suggests the importance of STY protein kinases in plant growth and development. Genome-wide analysis is supported by phosphoproteomics in Arabidopsis seedlings. Evidence for tyrosine phosphorylated proteins is provided by alkaline hydrolysis, phosphoamino acid analysis and peptide mass fingerprinting. Alkaline treatment detected two proteins corresponding to 46 and 37.5 kD. Phosphoamino acids analysis confirmed their dual-specificity nature. MALDI mass spectrometry and peptide mass fingerprinting analysis identified these two proteins as ATN1 and peanut serine/threonine/tyrosine protein kinase like protein from Arabidopsis. To further support the in silico approach, we have overexpressed one of the identified Arabidopsis thaliana serine/threonine/tyrosine protein kinases (AtSTYPK) in E. coli. The recombinant kinase was induced with IPTG and purified by using nickel-nitrilotriacetic acid affinity chromatography. AtSTYPK exhibited a strong preference for manganese over magnesium for kinase activity. The autophosphorylation activity of AtSTYPK was inhibited by the addition of calcium to reaction buffer containing manganese. The rate of autophosphorylation reaction was linear with increasing time and protein concentration. The AtSTYPK phosphorylated histone H1 (type III-S), and myelin basic protein (MBP) in substrate phosphorylation reaction and it did not phosphorylate casein or enolase. To see whether calcium or magnesium inhibits phosphorylation of MBP, we have performed the reaction in the presence of combination of different metal ions. The MBP phosphorylation reaction is more efficient in the presence of Mg2++ Mn2+ than Ca2++ Mn2+ under the same conditions. The recombinant kinase autophosphorylated on serine, threonine and tyrosine residues and phosphorylated myelin basic protein on threonine and tyrosine residues. The AtSTYPK harbors a manganese-dependent serine/threonine kinase domain, COG3642. H248 and S265 on COG3642 are conserved in AtSTYPK and the site-directed mutation of H248 to alanine resulted in loss of serine/threonine kinase activity, but the mutation of S265 to alanine showed a slight increase in its kinase activity. The protein kinase activity is regulated by various mechanisms that include autophosphorylation, protein phosphorylation by other kinases and by the action of regulatory domains or subunits. The role of tyrosine residues in the regulation of peanut dual-specificity kinase activity is well documented, but the importance of serine and threonine residues in the regulation of dual-specificity protein kinase is not studied so far. The kinase activity is generally regulated by phosphorylation of one or more residues within the kinase activation loop. The role of threonine residues in the kinase activation loop and the TEY motif of AtSTYPK were investigated in the present study. Four threonine residues in the activation loop and a T208 in the TEY sequence motif were converted to alanine to study their role in the regulation of kinase activity. The protein kinase activity was abolished when T208 and T293 of the activation loop were converted to alanine. Interestingly, the conversion of T284 in the activation loop to alanine resulted in an increase in both auto- and substrate phosphorylations. The mutation of T288 and T291 to alanine had no effect on kinase activity. There are eight serine residues in the kinase catalytic domain of AtSTYPK and surprisingly there is no serine residue in the kinase activation loop. So it is worthwhile to see how phosphorylation of serine residues regulates the dual-specificity protein kinase activity. The role of each serine residue was studied individually by substituting them with alanine. Serines at positions 215, 259, 269 and 315 regulate the kinase activity both in terms of autophosphorylation and substrate phosphorylation of myelin basic protein. The mutation of serine 265 to alanine resulted in slight increase in auto- and substrate phosphorylations, suggesting that it could be autoinhibitory in function. The other serine residues at positions 165, 181 and 360 did not show any change in the phosphorylation status when compared to wild-type AtSTYPK. In conclusion, this data suggests the importance of serine and threonine residues in the regulation of dual-specificity protein kinase activity and emphasizes the complexity of regulation of dual-specificity protein kinases in plants. To summarise, this study suggests that tyrosine phosphorylation in plants could be brought about only by dual-specificity protein kinases that phosphorylate on serine, threonine and tyrosine residues. This raises an interesting possibility that plants lack classical tyrosine kinases. The results provide a first report of manganese-dependent dual-specificity kinase from plant systems. This data also suggests that plant dual-specificity kinases undergo phosphorylation at multiple amino acid residues and their activity is regulated by various mechanisms, suggesting that they could be regulated by different mechanisms at different stages of plant growth and development. However, the role of dual-specificity kinases in planta has to be understood by mutant analysis in order to assign the physiological roles to these kinases. Further studies are needed to identify the upstream kinase(s) and downstream targets. Determination of physiological functions for dual-specificity protein kinases raises an important challenge in future in the area of plant signal transduction.
242

Unusual Acylation Properties Of Type II Fatty Acid Biosynthesis Acyl Carrier Proteins

Misra, Ashish 07 1900 (has links)
This thesis entitled ‘ Unusual Acylation Properties of Type II Fatty Acid Biosynthesis Acyl Carrier Proteins’ describes the discovery of self-acylation and malonyl transferase activity in acyl carrier proteins involved in type II fatty acid biosynthesis and assigns a physiological role to these processes inside the cellular milieu. Acyl carrier protein (ACP) is one of the most abundant proteins present inside the cell and almost 4% enzymes require it as a cofactor. Acyl carrier proteins can exist either as discrete proteins or as domains of large functional proteins. They function in a variety of synthases as central molecules to which growing acyl intermediates and nascent product molecules are covalently tethered during the elongation and modification steps required to produce the final product. A prototypical bacterial ACP is composed of 70-80 amino acids and is generally expressed in the apo form. It is post-translationally modified to active holo form by the addition of 4'-phosphopantetheine moiety to an absolutely conserved serine residue in a reaction catalyzed by holo-ACP synthase or 4'-phosphopantetheine transferase. Chapter 1 surveys literature related to carrier proteins inside the cell and describes the thesis objective. It also presents an overview of the acyl carrier proteins and their involvement in various metabolic pathways inside the cell. The chapter details the structural organization of acyl carrier proteins from various sources revealing the conservation in their structure and also details the molecular basis of interaction of ACP with other enzymes inside the cell. The discovery of unusual self-acylation property in acyl carrier proteins involved in polyketide biosynthesis and its absence in acyl carrier proteins involved in fatty acid biosynthesis prompted me to investigate the reasons for this selective behavior. Discovery of self-acylation property in acyl carrier proteins Plasmodium falciparum and chloroplast targeted Brassica napus acyl carrier proteins involved in type II fatty acid biosynthesis and the mechanism of this reaction forms the basis of Chapter 2. In this chapter it has been shown that self-acylation property is intrinsic to a given acyl carrier protein and is not dependent on the pathway in which it is involved. Based on primary sequence analysis and site directed mutagenesis studies presence of an aspartate/glutamate has been identified to be critical for the self-acylation event. Furthermore, it has also been shown that the self-acylation event in type II fatty acid biosynthesis acyl carrier proteins is highly specific in nature employing only dicarboxylic acid –CoAs as substrates unlike the polyketide biosynthesis acyl carrier proteins which utilize both dicarboxylic acid and β-keto acid thiol ester -CoAs as substrates. The detailed kinetics of these reactions has also been worked out. Combining all the results a plausible mechanism for the self-acylation reaction has been proposed. Chapter 3 describes the discovery of a novel malonyl transferase behavior in acyl carrier proteins involved in type II fatty acid biosynthesis. Malonyl transferase property in ACPs of type II FAS from a bacterium (Escherichia coli), a plant (Brassica napus) and a parasitic protozoon (Plasmodium falciparum) were investigated to present a unifying paradigm for the mechanism of malonyl transferase behavior in ACPs. Identification of malonyl transferase property in Plasmodium falciparum ACP and Escherichia coli ACP (EcACP) and the absence of this property in Brassica napus ACP has been described in this chapter. Detailed investigations demonstrated that presence of an arginine or a lysine in loop II and an arginine or glutamine at the start of helix III as the residues that are critical for the transferase activity. In order to assign a physiologic function to these unusual acylation properties, fabD(Ts) mutant strain of Escherichia coli was utilized for heterologous complementation by the various wild type and mutant ACPs that are able to catalyze either or both of the activities. Growth of the mutant strain at non-permissive temperature, when complemented with ACPs catalyzing both the reactions confirmed that these properties have a physiologic relevance. Extensive mutagenesis experiments in conjunction with complementation studies allowed me to propose a plausible mechanism on how the self-malonylation and malonyl transferase properties operate in tandem. Chapter 4 describes the thermodynamic characterization of self-acylation process using Isothermal Titration Calorimetry. Isothermal Titration Calorimetric studies on the binding of malonyl, succinyl, butyryl and methylmalonyl –CoA to Plasmodium falciparum and Brassica napus acyl carrier proteins were performed to investigate the role of thermodynamic parameters in the specificity of self-acylation reaction. Calculation of the parameters showed that the thermodynamics does not control the self-acylation reaction. The evolution of self-acylation property in various acyl carrier proteins and its possible significance in the evolution of various metabolic events is described in Chapter 5. Extensive bioinformatics search was performed and phylogenetic analysis on acyl carrier proteins from 60 different taxa was done using the MEGA4 program. Analysis showed that this property was first found in cyanobacterium. Later, during the course of evolution this property was lost in most acyl carrier proteins, and was retained either in acyl carrier proteins that are targeted to organelles of cyanobaterial orgin viz. apicoplast in apicomplexans and chlorplasts in plants or in acyl carrier proteins involved in secondary metabolic events such as polyketide biosynthesis. Chapter 6 summarizes the findings of the thesis. Acyl carrier protein from Plasmodium falciparum, Brassica napus and Escherichia coli were characterized for their self-acylation and malonyl transferase properties and a combined mechanism for these two properties is proposed. The work done also provides an in vivo rationale to these in vitro processes. Furthermore, the evolutionary significance of the self-acylation behavior is also discussed in the thesis. The thesis also probes into the thermodynamics of the self-acylation reaction in Plasmodium falciparum and Brassica napus acyl carrier proteins. Thus, the thesis adds a new dimension to the much unexplored ACP biology and paves the way to study in vivo roles of these processes in detail. Appendix I describes the Isothermal Titration calorimetric characterization of binding of various acyl-PO4 molecules to Escherichia coli PlsX (Acyl-phosphate acyltransferase). PlsX, the first enzyme of phosphatidic acid biosynthesis pathway catalyzes the conversion of acyl-ACP into acyl-PO4, which is further used by other enzymes leading to the formation of phosphatidic acid. ITC results presented in this section show that longer chain length acyl-PO4 molecules show better binding to PlsX, as compared to the smaller ones demonstrating that long chain acyl molecules serve as better substrates for phosphatidic acid synthesis.
243

The role of integrin-dependent cell matrix adhesion in muscle development /

Jani, Klodiana. January 2009 (has links)
Cell adhesion is essential to cell motility and tissue integrity and is regulated by the Integrin family of transmembrane receptors. Integrin binds to ligand extracellularly and provide anchor to the intracellular cytoskeleton via adhesion scaffolding proteins. In order to link cell to the surrounding matrix Integrin needs to be activated. Intracellular activation signals induce perturbations in Integrin cytoplasmic domain that are translated into a conformational change in extracellular region for high affinity ligand binding. Integrin engagement by matrix, in turn, triggers the assembly of adhesion complexes. Such early adhesions promote cytoskeletal organization with subsequent contractile activity that exerts forces against initial Integrin-matrix adhesions. In response to force, Integrin strengthens the interaction with matrix through its clustering and successive recruitment of additional adhesion components. These bidirectional regulatory loops mediated by such interactions are largely dependent on the unique function of Integrin adhesion components. / We demonstrate a novel role for the PDZ/LIM domain protein Zasp as a core component of Integrin adhesions. Specifically, Zasp colocalizes with Integrins at focal adhesion in cultured cells and myotendinous junctions in Drosophila embryos. In both cases elimination of Zasp modifies Integrin function causing consequently defects in cell spreading and muscle attachment. Zasp supports Integrin adhesion to the extracellular matrix that is required to withstand tensile forces exerted during cell spreading and muscle contraction. Furthermore, we found that the distribution of Zasp in muscle Z-lines is essential to orchestrate the cross-linking of alpha-Actinin and Actin filaments. Disruption of Zasp leads to loss of muscle cytoarchitecture, pointing to a larger role for Zasp in sarcomere assembly. Finally, we demonstrate that Zasp, in addition to alpha-Actinin, physically interacts with the Integrin- and Actin-bound cytoskeletal protein Talin. / Collectively, our results point to a dual role for Zasp as a structural scaffold. First it regulates Integrin adhesion to the extracellular matrix by interacting with the head domain of Talin at the myotendinous junctions. Second, Zasp controls sarcomere assembly by tethering the presarcomeric alpha-Actinin component to the tail domain of Talin. Zasp finding as a crucial adhesion component provides further insights on the mechanism underlying Integrin-mediated adhesion.
244

Kaposi's sarcoma-associated herpesvirus ORF57 protein interacts with PYM to enhance translation of viral intronless mRNAs

Boyne, J. R., Jackson, B. R., Taylor, A., Macnab, S. A., Whitehouse, A. January 2010 (has links)
Kaposi's sarcoma-associated herpesvirus (KSHV) expresses numerous intronless mRNAs that are unable to access splicing-dependent cellular mRNA nuclear export pathways. To circumvent this problem, KSHV encodes the open reading frame 57 (ORF57) protein, which orchestrates the formation of an export-competent virus ribonucleoprotein particle comprising the nuclear export complex hTREX, but not the exon-junction complex (EJC). Interestingly, EJCs stimulate mRNA translation, which raises the intriguing question of how intronless KSHV transcripts are efficiently translated. Herein, we show that ORF57 associates with components of the 48S pre-initiation complex and co-sediments with the 40S ribosomal subunits. Strikingly, we observed a direct interaction between ORF57 and PYM, a cellular protein that enhances translation by recruiting the 48S pre-initiation complex to newly exported mRNAs, through an interaction with the EJC. Moreover, detailed biochemical analysis suggests that ORF57 recruits PYM to intronless KSHV mRNA and PYM then facilitates the association of ORF57 and the cellular translation machinery. We, therefore, propose a model whereby ORF57 interacts directly with PYM to enhance translation of intronless KSHV transcripts.
245

Molecular genetic studies on cystinuria /

Harnevik, Lotta, January 2007 (has links) (PDF)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2007. / Härtill 4 uppsatser.
246

Localized calcineurin controls L-type Ca²⁺ channel activity and nuclear signaling /

Oliveria, Seth F. January 2008 (has links)
Thesis (Ph.D. in Neuroscience) -- University of Colorado Denver, 2008. / Typescript. Includes bibliographical references (leaves 110-125). Online version available via ProQuest Digital Dissertations.
247

The serotonin transporter and vesicular monoamine transporters during development

Hansson, Stefan R. January 1998 (has links)
Thesis (doctoral)--Lund University, 1998. / Added t.p. with thesis statement inserted. Includes bibliographical references.
248

The serotonin transporter and vesicular monoamine transporters during development

Hansson, Stefan R. January 1998 (has links)
Thesis (doctoral)--Lund University, 1998. / Added t.p. with thesis statement inserted. Includes bibliographical references.
249

Regulation of guanine nucelotide exchange in inhibitory G protein alpha subunit by activator of G protein signaling 3 and novel regulatory peptides

Adhikari, Anirban. January 2005 (has links)
Thesis (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2005. / Vita. Bibliography: References located at the end of each chapter.
250

Functional Elements of EspF<sub>u</sub>, an Enterohemorrhagic <em>E. coli</em> Effector that Stimulates Actin Assembly: A Dissertation

Skehan, Brian M. 17 June 2009 (has links)
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an attaching and effacing pathogen that upon attachment to host cells, induce characteristic attaching and effacing lesions and formation of F-actin rich pedestals beneath sites of bacterial attachment. EHEC harbors a Type III secretion system through which it delivers dozens of effectors into the host cell. The two secreted effectors critical for EHEC-mediated actin pedestal formation are the translocated intimin receptor (Tir) and EspFU. EspFU consists of an N-terminal secretion signal and a C-terminus containing six tandem 47-residue proline-rich repeats, each of which can bind and activate the actin nucleation promoting factor N-WASP. Structural and functional analyses described here have identified the mechanism of N-WASP activation by EspFU and the minimal domains and specific residues required for this activity. While EspFU and Tir are the only bacterial effectors required for F-actin pedestal formation, recruitment of EspFU to Tir is mediated by an unidentified putative host factor. To identify the host factor responsible for linking these two effectors, a combination of in vitro and functional assays were used to identify the host factor, IRTKS and the residues required for these interactions were defined. Further, the presence of at least two 47-residue repeats in all characterized clinical isolates of canonical EHEC strains led us to address the minimal requirements for EspFU functional domains to promote recruitment to Tir and N-WASP activation. Here we show that two proline-rich elements of EspFU are required for recruitment of EspFU by IRTKS to sites of bacterial attachment. Furthermore, once artificially clustered at the membrane, a single N-WASP binding element of EspFU can induce actin pedestal formation.

Page generated in 0.0525 seconds